ترغب بنشر مسار تعليمي؟ اضغط هنا

267 - D. Gotz , C. Adami , S. Basa 2015
We present the Micro-channel X-ray Telescope (MXT), a new narrow-field (about 1{deg}) telescope that will be flying on the Sino-French SVOM mission dedicated to Gamma-Ray Burst science, scheduled for launch in 2021. MXT is based on square micro pore optics (MPOs), coupled with a low noise CCD. The optics are based on a Lobster Eye design, while the CCD is a focal plane detector similar to the type developed for the seven eROSITA telescopes. MXT is a compact and light (<35 kg) telescope with a 1 m focal length, and it will provide an effective area of about 45 cmsq on axis at 1 keV. The MXT PSF is expected to be better than 4.2 arc min (FWHM) ensuring a localization accuracy of the afterglows of the SVOM GRBs to better than 1 arc min (90% c.l. with no systematics) provided MXT data are collected within 5 minutes after the trigger. The MXT sensitivity will be adequate to detect the afterglows for almost all the SVOM GRBs as well as to perform observations of non-GRB astrophysical objects. These performances are fully adapted to the SVOM science goals, and prove that small and light telescopes can be used for future small X-ray missions.
200 - S. Basa , J. G. Cuby , S. Savaglio 2012
Long duration gamma-ray bursts (GRBs) allow us to explore the distant Universe, and are potentially the most effective tracer of the most distant objects. Our current knowledge of the properties of GRB host galaxies at redshifts >5 is very scarce. We propose to improve this situation by obtaining more observations of high-redshift hosts to better understand their properties and help enable us to use GRBs as probes of the high-redshift universe. We performed very deep photometric observations of three high-redshift GRB host galaxies, GRB 080913 at z =6.7, GRB 060927 at z =5.5 and GRB 060522 at z =5.1. In addition, we completed deep spectroscopic observations of the GRB080913 host galaxy with X-Shooter at the VLT to search for Ly-alpha emission. For the sake of the discussion, we use published results on another high-redshift GRB host, GRB 050904 at z = 6.3. The sample of GRB host galaxies studied in this paper consists of four out of the five spectroscopically confirmed GRBs at z>5. Despite our presented observations being the deepest ever reported of high-redshift GRB host galaxies, we do not detect any of the hosts, neither in photometry nor in spectroscopy in the case of GRB 080913. These observations indicate that the GRB host galaxies seem to evolve with time and to have lower SFRs at z >5 than they have at z<1. In addition, the host galaxy of GRB 080913 at z =6.7 does not show Ly-alpha emission. While the measured properties of the galaxies in our sample agree with the properties of the general galaxy population at z>5, our observations are not sufficiently sensitive to allow us to infer further conclusions on whether this specific population is representative of the general one. The characterization of high-redshift GRB host galaxies is a very challenging endeavor requiring a lot of telescope time, but is necessary to improve our understanding of the high-redshift universe.
209 - S. Basa , J. Wei , J. Paul 2008
We present the Space-based multi-band astronomical Variable Objects Monitor mission (SVOM) decided by the Chinese National Space Agency (CNSA) and the French Space Agency (CNES). The mission which is designed to detect about 80 Gamma-Ray Bursts (GRBs ) of all known types per year, will carry a very innovative scientific payload combining a gamma-ray coded mask imagers sensitive in the range 4 keV to 250 keV, a soft X-ray telescope operating between 0.5 to 2 keV, a gamma-ray spectro-photometer sensitive in the range 50 keV to 5 MeV, and an optical telescope able to measure the GRB afterglow emission down to a magnitude limit M$_R=23$ with a 300 s exposure. A particular attention will be also paid to the follow-up in making easy the observation of the SVOM detected GRB by the largest ground based telescopes. Scheduled for a launch in 2013, it will provide fast and reliable GRB positions, will measure the broadband spectral energy distribution and temporal properties of the prompt emission, and will quickly identify the optical afterglows of detected GRBs, including those at very high redshift.
113 - S. Gezari , S. Basa , D. C. Martin 2008
We present two luminous UV/optical flares from the nuclei of apparently inactive early-type galaxies at z=0.37 and 0.33 that have the radiative properties of a flare from the tidal disruption of a star. In this paper we report the second candidate ti dal disruption event discovery in the UV by the GALEX Deep Imaging Survey, and present simultaneous optical light curves from the CFHTLS Deep Imaging Survey for both UV flares. The first few months of the UV/optical light curves are well fitted with the canonical t^(-5/3) power-law decay predicted for emission from the fallback of debris from a tidally disrupted star. Chandra ACIS X-ray observations during the flares detect soft X-ray sources with T_bb= (2-5) x 10^5 K or Gamma > 3 and place limits on hard X-ray emission from an underlying AGN down to L_X (2-10 keV) <~ 10^41 ergs/s. Blackbody fits to the UV/optical spectral energy distributions of the flares indicate peak flare luminosities of > 10^44-10^45 ergs/s. The temperature, luminosity, and light curves of both flares are in excellent agreement with emission from a tidally disrupted main sequence star onto a central black hole of several times 10^7 msun. The observed detection rate of our search over ~ 2.9 deg^2 of GALEX Deep Imaging Survey data spanning from 2003 to 2007 is consistent with tidal disruption rates calculated from dynamical models, and we use these models to make predictions for the detection rates of the next generation of optical synoptic surveys.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا