ﻻ يوجد ملخص باللغة العربية
We present the Space-based multi-band astronomical Variable Objects Monitor mission (SVOM) decided by the Chinese National Space Agency (CNSA) and the French Space Agency (CNES). The mission which is designed to detect about 80 Gamma-Ray Bursts (GRBs) of all known types per year, will carry a very innovative scientific payload combining a gamma-ray coded mask imagers sensitive in the range 4 keV to 250 keV, a soft X-ray telescope operating between 0.5 to 2 keV, a gamma-ray spectro-photometer sensitive in the range 50 keV to 5 MeV, and an optical telescope able to measure the GRB afterglow emission down to a magnitude limit M$_R=23$ with a 300 s exposure. A particular attention will be also paid to the follow-up in making easy the observation of the SVOM detected GRB by the largest ground based telescopes. Scheduled for a launch in 2013, it will provide fast and reliable GRB positions, will measure the broadband spectral energy distribution and temporal properties of the prompt emission, and will quickly identify the optical afterglows of detected GRBs, including those at very high redshift.
We present the SVOM (Space-based multi-band astronomical Variable Objects Monitor) mission that the Chinese National Space Agency and the French Space Agency have decided to jointly implement. SVOM has been designed to detect all known types of gamma
We briefly present the science capabilities, the instruments, the operations, and the expected performance of the SVOM mission. SVOM (Space-based multiband astronomical Variable Objects Monitor) is a Chinese-French space mission dedicated to the stud
We present the Microchannel X-ray Telescope, a new light and compact focussing telescope that will be flying on the Sino-French SVOM mission dedicated to Gamma-Ray Burst science. The MXT design is based on the coupling of square pore micro-channel pl
We present ECLAIRs, the Gamma-ray burst (GRB) trigger camera to fly on-board the Chinese-French mission SVOM. ECLAIRs is a wide-field ($sim 2$,sr) coded mask camera with a mask transparency of 40% and a 1024 $mathrm{cm}^2$ detection plane coupled to
For several decades now, wide-field coded mask cameras have been used with success to localise Gamma-ray bursts (GRBs). In these instruments, the event count rate is dominated by the photon background due to their large field of view and large effect