ترغب بنشر مسار تعليمي؟ اضغط هنا

102 - S. Azadi , W. M. C. Foulkes , 2013
We use the diffusion quantum Monte Carlo (DMC) method to calculate the ground state phase diagram of solid molecular hydrogen and examine the stability of the most important insulating phases relative to metallic crystalline molecular hydrogen. We de velop a new method to account for finite-size errors by combining the use of twist-averaged boundary conditions with corrections obtained using the Kwee-Zhang-Krakauer (KZK) functional in density functional theory. To study band-gap closure and find the metallization pressure, we perform accurate quasi-particle many-body calculations using the $GW$ method. In the static approximation, our DMC simulations indicate a transition from the insulating Cmca-12 structure to the metallic Cmca structure at around 375 GPa. The $GW$ band gap of Cmca-12 closes at roughly the same pressure. In the dynamic DMC phase diagram, which includes the effects of zero-point energy, the Cmca-12 structure remains stable up to 430 GPa, well above the pressure at which the $GW$ band gap closes. Our results predict that the semimetallic state observed experimentally at around 360 GPa [Phys. Rev. Lett. {bf 108}, 146402 (2012)] may correspond to the Cmca-12 structure near the pressure at which the band gap closes. The dynamic DMC phase diagram indicates that the hexagonal close packed $P6_3/m$ structure, which has the largest band gap of the insulating structures considered, is stable up to 220 GPa. This is consistent with recent X-ray data taken at pressures up to 183 GPa [Phys. Rev. B {bf 82}, 060101(R) (2010)], which also reported a hexagonal close packed arrangement of hydrogen molecules.
434 - S. Azadi , , W. M. C. Foulkes 2013
This paper investigates some of the successes and failures of density functional theory in the study of high-pressure solid hydrogen at low temperature. We calculate the phase diagram, metallization pressure, phonon spectrum, and proton zero-point en ergy using three popular exchange-correlation functionals: the local density approximation (LDA), the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation, and the semi-local Becke-Lee-Yang-Parr (BLYP) functional. We focus on the solid molecular P$6_3$/m, C2/c, Cmca-12, and Cmca structures in the pressure range from $100<P<500$ GPa over which phases I, II and III are observed experimentally. At the static level of theory, in which proton zero-point energy is ignored, the LDA, PBE and BLYP functionals give very different structural transition and metallization pressures, with the BLYP phase diagram in better agreement with experiment. Nevertheless, all three functionals provide qualitatively the same information about the band gaps of the four structures and the phase transitions between them. Going beyond the static level, we find that the frequencies of the vibron modes observed above 3000 cm$^{-1}$ depend strongly on the choice of exchange-correlation functional, although the low-frequency part of the phonon spectrum is little affected. The largest and smallest values of the proton zero-point energy, obtained using the BLYP and LDA functionals, respectively, differ by more than 10 meV/proton. Including the proton zero-point energy calculated from the phonon spectrum within the harmonic approximation improves the agreement of the BLYP and PBE phase diagrams with experiment. Taken as a whole, our results demonstrate the inadequacy of mean-field-like density functional calculations of solid molecular hydrogen in phases I, II and III and emphasize the need for more sophisticated methods.
184 - S. Azadi , C. Cavazzoni , 2010
We introduce a method for solving a self consistent electronic calculation within localized atomic orbitals, that allows us to converge to the complete basis set (CBS) limit in a stable, controlled, and systematic way. We compare our results with the ones obtained with a standard quantum chemistry package for the simple benzene molecule. We find perfect agreement for small basis set and show that, within our scheme, it is possible to work with a very large basis in an efficient and stable way. Therefore we can avoid to introduce any extrapolation to reach the CBS limit. In our study we have also carried out variational Monte Carlo (VMC) and lattice regularized diffusion Monte Carlo (LRDMC) with a standard many-body wave function (WF) defined by the product of a Slater determinant and a Jastrow factor. Once the Jastrow factor is optimized by keeping fixed the Slater determinant provided by our new scheme, we obtain a very good description of the atomization energy of the benzene molecule only when the basis of atomic orbitals is large enough and close to the CBS limit, yielding the lowest variational energies.
422 - M. Marchi , S. Azadi , M. Casula 2009
We introduce a method for accurate quantum chemical calculations based on a simple variational wave function, defined by a single geminal that couples all the electrons into singlet pairs, combined with a real space correlation factor. The method use s a constrained variational optimization, based on an expansion of the geminal in terms of molecular orbitals. It is shown that the most relevant non-dynamical correlations are correctly reproduced once an appropriate number $n$ of molecular orbitals is considered. The value of $n$ is determined by requiring that, in the atomization limit, the atoms are described by Hartree-Fock Slater determinants with Jastrow correlations. The energetics, as well as other physical and chemical properties, are then given by an efficient variational approach based on standard quantum Monte Carlo techniques. We test this method on a set of homonuclear (Be2, B2, C2, N2, O2, and F2) and heteronuclear (LiF, and CN) dimers for which strong non-dynamical correlations and/or weak van der Waals interactions are present.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا