ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an early study designed to analyze how city planning and the health of senior citizens can benefit from the use of augmented reality (AR) using Microsofts HoloLens. We also explore whether AR and VR can be used to help city planners receiv e real-time feedback from citizens, such as the elderly, on virtual plans, allowing for informed decisions to be made before any construction begins.
141 - K.Doroud , Z.Liu , M.C.S. Williams 2019
Measurement of the Time-of-Flight (TOF) of the 511 keV gammas brings an important reduction of statistical noise in the PET image, with higher precision time measurements producing clearer images. Scintillating crystals are used to convert the 511 ke V annihilation photon to an electron of ~511 KeV energy via the photoelectric effect; it is necessary to determine with precision the position and time of this conversion within the scintillating crystal. We propose using an array of crystals cut into a specific geometry discussed below; these crystals are read out by an array of strip SiPMs. This technique allows individual time measurements of the first arriving photo-electrons and to extract the best time resolution using a specific algorithm. The final result is a precise determination of the 3D position (that includes the depth of interaction) of the photoelectric interaction and an improved time measurement.
The Multigap Resistive Plate Chamber (MRPC) is a gaseous detector; the performance depends very much on the gas mixture as well as the design. MRPCs are used as a timing device in several collider experiments and cosmic ray experiments thanks to the excellent timing performance. The typical gas mixtures of RPC-type detectors at current experiments are based on the gases $rm C_2F_4H_2$ and $rm SF_6$. These gases have very high Global Warming Potential (GWP) values of 1430 and 23900 respectively. The present contribution has been performed as a part of efforts to reduce the amount of greenhouse gases used in high energy experiments. The performance of MRPC has been measured with two different gas mixtures; $rm C_2F_4H_2$ based gas mixtures and the ecological $rm C_3F_4H_2$ (HFO-1234ze). A small MRPC was used for the tests. It has an sensitive area of 20 $times$ 20 $rm cm^2$; it was been built with 6 gaps of 220 $mu$m. In normal operation, the strong space charge created within the gas avalanche limits the avalanches growth. $rm SF_6$ plays an important part in the process due to its high attachment coefficient at low electric fields. It is thus necessary to find another gas that has a similar attachment coefficient. $rm CF_{3}I$ is a possible candidate. Tests were performed with this gas added to $rm C_3F_4H_2$.
We have performed, for the first time, the successful automated detection of Coronal Mass Ejections (CMEs) in data from the inner heliospheric imager (HI-1) cameras on the STEREO A spacecraft. Detection of CMEs is done in time-height maps based on th e application of the Hough transform, using a modified version of the CACTus software package, conventionally applied to coronagraph data. In this paper we describe the method of detection. We present the result of the application of the technique to a few CMEs that are well detected in the HI-1 imagery, and compare these results with those based on manual cataloging methodologies. We discuss in detail the advantages and disadvantages of this method.
The layered honeycomb magnet alpha-RuCl3 has been proposed as a candidate to realize a Kitaev spin model with strongly frustrated, bond-dependent, anisotropic interactions between spin-orbit entangled jeff=1/2 Ru4+ magnetic moments. Here we report a detailed study of the three-dimensional crystal structure using x-ray diffraction on untwinned crystals combined with structural relaxation calculations. We consider several models for the stacking of honeycomb layers and find evidence for a crystal structure with a monoclinic unit cell corresponding to a stacking of layers with a unidirectional in-plane offset, with occasional in-plane sliding stacking faults, in contrast with the currently-assumed trigonal 3-layer stacking periodicity. We report electronic band structure calculations for the monoclinic structure, which find support for the applicability of the jeff=1/2 picture once spin orbit coupling and electron correlations are included. We propose that differences in the magnitude of anisotropic exchange along symmetry inequivalent bonds in the monoclinic cell could provide a natural mechanism to explain the spin gap observed in powder inelastic neutron scattering, in contrast to spin models based on the three-fold symmetric trigonal structure, which predict a gapless spectrum within linear spin wave theory. Our susceptibility measurements on both powders and stacked crystals, as well as neutron powder diffraction show a single magnetic transition at TN ~ 13K. The analysis of the neutron data provides evidence for zigzag magnetic order in the honeycomb layers with an antiferromagnetic stacking between layers. Magnetization measurements on stacked single crystals in pulsed field up to 60T show a single transition around 8T for in-plane fields followed by a gradual, asymptotic approach to magnetization saturation, as characteristic of strongly anisotropic exchange interactions.
We consider the problem of jointly estimating the attitude and spin-rate of a spinning spacecraft. Psiaki (J. Astronautical Sci., 57(1-2):73--92, 2009) has formulated a family of optimization problems that generalize the classical least-squares attit ude estimation problem, known as Wahbas problem, to the case of a spinning spacecraft. If the rotation axis is fixed and known, but the spin-rate is unknown (such as for nutation-damped spin-stabilized spacecraft) we show that Psiakis problem can be reformulated exactly as a type of tractable convex optimization problem called a semidefinite optimization problem. This reformulation allows us to globally solve the problem using standard numerical routines for semidefinite optimization. It also provides a natural semidefinite relaxation-based approach to more complicated variations on the problem.
Stimulus dimensionality-reduction methods in neuroscience seek to identify a low-dimensional space of stimulus features that affect a neurons probability of spiking. One popular method, known as maximally informative dimensions (MID), uses an informa tion-theoretic quantity known as single-spike information to identify this space. Here we examine MID from a model-based perspective. We show that MID is a maximum-likelihood estimator for the parameters of a linear-nonlinear-Poisson (LNP) model, and that the empirical single-spike information corresponds to the normalized log-likelihood under a Poisson model. This equivalence implies that MID does not necessarily find maximally informative stimulus dimensions when spiking is not well described as Poisson. We provide several examples to illustrate this shortcoming, and derive a lower bound on the information lost when spiking is Bernoulli in discrete time bins. To overcome this limitation, we introduce model-based dimensionality reduction methods for neurons with non-Poisson firing statistics, and show that they can be framed equivalently in likelihood-based or information-theoretic terms. Finally, we show how to overcome practical limitations on the number of stimulus dimensions that MID can estimate by constraining the form of the non-parametric nonlinearity in an LNP model. We illustrate these methods with simulations and data from primate visual cortex.
In the field of ultracold atoms in optical lattices a plethora of phenomena governed by the hopping energy $J$ and the interaction energy $U$ have been studied in recent years. However, the trapping potential typically present in these systems sets a nother energy scale and the effects of the corresponding time scale on the quantum dynamics have rarely been considered. Here we study the quantum collapse and revival of a lattice Bose-Einstein condensate (BEC) in an arbitrary spatial potential, focusing on the special case of harmonic confinement. Analyzing the time evolution of the single-particle density matrix, we show that the physics arising at the (temporally) recurrent quantum phase revivals is essentially captured by an effective single particle theory. This opens the possibility to prepare exotic non-equilibrium condensate states with a large degree of freedom by engineering the underlying spatial lattice potential.
In this paper a neutron star with an inner core which undergoes a phase transition, which is characterized by conformal degrees of freedom on the phase boundary, is considered. Typical cases of such a phase transition are e.g. quantum Hall effect, su perconductivity and superfluidity. Assuming the mechanical stability of this system the effects induced by the conformal degrees of freedom on the phase boundary will be analyzed. We will see that the inclusion of conformal degrees of freedom is not always consistent with the staticity of the phase boundary. Indeed also in the case of mechanical equilibrium there may be the tendency of one phase to swallow the other. Such a shift of the phase boundary would not imply any compression or decompression of the core. By solving the Israel junction conditions for the conformal matter, we have found the range of physical parameters which can guarantee a stable equilibrium of the phase boundary of the neutron star. The relevant parameters turn out to be not only the density difference but also the difference of the slope of the density profiles of the two phases. The values of the parameters which guarantee the stability turn out to be in a phenomenologically reasonable range. For the parameter values where the the phase boundary tends to move, a possible astrophysical consequence related to sudden small changes of the moment of inertia of the star is briefly discussed.
We develop a general framework for MAP estimation in discrete and Gaussian graphical models using Lagrangian relaxation techniques. The key idea is to reformulate an intractable estimation problem as one defined on a more tractable graph, but subject to additional constraints. Relaxing these constraints gives a tractable dual problem, one defined by a thin graph, which is then optimized by an iterative procedure. When this iterative optimization leads to a consistent estimate, one which also satisfies the constraints, then it corresponds to an optimal MAP estimate of the original model. Otherwise there is a ``duality gap, and we obtain a bound on the optimal solution. Thus, our approach combines convex optimization with dynamic programming techniques applicable for thin graphs. The popular tree-reweighted max-product (TRMP) method may be seen as solving a particular class of such relaxations, where the intractable graph is relaxed to a set of spanning trees. We also consider relaxations to a set of small induced subgraphs, thin subgraphs (e.g. loops), and a connected tree obtained by ``unwinding cycles. In addition, we propose a new class of multiscale relaxations that introduce ``summary variables. The potential benefits of such generalizations include: reducing or eliminating the ``duality gap in hard problems, reducing the number or Lagrange multipliers in the dual problem, and accelerating convergence of the iterative optimization procedure.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا