ترغب بنشر مسار تعليمي؟ اضغط هنا

193 - F. Pecora , S. Servidio , A. Greco 2021
Energetic particle transport in the interplanetary medium is known to be affected by magnetic structures. It has been demonstrated for solar energetic particles in near-Earth orbit studies, and also for the more energetic cosmic rays. In this paper, we show observational evidence that intensity variations of solar energetic particles can be correlated with the occurrence of helical magnetic flux tubes and their boundaries. The analysis is carried out using data from Parker Solar Probe orbit 5, in the period 2020 May 24 to June 2. We use FIELDS magnetic field data and energetic particle measurements from the Integrated Science Investigation of the Sun (isois) suite on the Parker Solar Probe. We identify magnetic flux ropes by employing a real-space evaluation of magnetic helicity, and their potential boundaries using the Partial Variance of Increments method. We find that energetic particles are either confined within or localized outside of helical flux tubes, suggesting that the latter act as transport boundaries for particles, consistent with previously developed viewpoints.
66 - F. Pecora 2020
Plasma turbulence can be viewed as a magnetic landscape populated by large and small scale coherent structures. In this complex network, large helical magnetic tubes might be separated by small scale magnetic reconnection events (current sheets). How ever, the identification of these magnetic structures in a continuous stream of data has always been a challenging task. Here we present a method that is able to characterize both the large and small scale structures of the turbulent solar wind, based on the combined use of a filtered magnetic helicity ($H_m$) and the Partial Variance of Increments (PVI). This simple, single-spacecraft technique, has been validated first via direct numerical simulations of plasma turbulence and then applied to data from the Parker Solar Probe (PSP) mission. This novel analysis, combining $H_m$&PVI methods, reveals that a large number of flux tubes populate the solar wind and continuously merge in contact regions where magnetic reconnection and particle acceleration may occur.
We present a numerical study of the Einstein equations, according to the Arnowitt-Deser-Misner (ADM) formalism, in order to simulate the dynamics of gravitational fields. We took in consideration the original $3+1$ decomposition of the ADM equations, in vacuum conditions, in simplified geometries. The numerical code is based on spectral methods, making use of filtering (de-aliasing) techniques. The algorithm has been stabilized via an adaptive time-refinement, based on a procedure that checks self-consistently the regularity of the solutions. The accuracy of our numerical model has been validated through a series of standard tests. Finally, we present also a new kind of initial data that can be used for testing numerical codes.
The mechanism of heating for hot, dilute, and turbulent plasmas represents a long-standing problem in space physics, whose implications concern both near-Earth environments and astrophysical systems. In order to explore the possible role of interpart icle collisions, simulations of plasma turbulence -- in both collisionless and weakly collisional regimes -- have been compared by adopting Eulerian Hybrid Boltzmann-Maxwell simulations, being proton-proton collisions explicitly introduced through the nonlinear Dougherty operator. Although collisions do not significantly influence the statistical characteristics of the turbulence, they dissipate nonthermal features in the proton distribution function and suppress the enstrophy/entropy cascade in the velocity space, damping the spectral transfer toward large Hermite modes. This enstrophy dissipation is particularly effective in regions where the plasma distribution function is strongly distorted, suggesting that collisional effects are enhanced by fine velocity-space structures. A qualitative connection between the turbulent energy cascade in fluids and the enstrophy cascade in plasmas has been established, opening a new path to the understanding of astrophysical plasma turbulence
The properties of the turbulence which develops in the outflows of magnetic reconnection have been investigated using self-consistent plasma simulations, in three dimensions. As commonly observed in space plasmas, magnetic reconnection is characteriz ed by the presence of turbulence. Here we provide a direct comparison of our simulations with reported observations of reconnection events in the magnetotail investigating the properties of the electromagnetic field and the energy conversion mechanisms. In particular, simulations show the development of a turbulent cascade consistent with spacecraft observations, statistics of the the dissipation mechanisms in the turbulent outflows similar to the one observed in reconnection jets in the magnetotail, and that the properties of turbulence vary as a function of the distance from the reconnecting X-line.
Plasma turbulence is studied via direct numerical simulations in a two-dimensional spatial geometry. Using a hybrid Vlasov-Maxwell model, we investigate the possibility of a velocity-space cascade. A novel theory of space plasma turbulence has been r ecently proposed by Servidio {it et al.} [PRL, {bf 119}, 205101 (2017)], supported by a three-dimensional Hermite decomposition applied to spacecraft measurements, showing that velocity space fluctuations of the ion velocity distribution follow a broad-band, power-law Hermite spectrum $P(m)$, where $m$ is the Hermite index. We numerically explore these mechanisms in a more magnetized regime. We find that (1) the plasma reveals spectral anisotropy in velocity space, due to the presence of an external magnetic field (analogous to spatial anisotropy of fluid and plasma turbulence); (2) the distribution of energy follows the prediction $P(m)sim m^{-2}$, proposed in the above theoretical-observational work; and (3) the velocity-space activity is intermittent in space, being enhanced close to coherent structures such as the reconnecting current sheets produced by turbulence. These results may be relevant to the nonlinear dynamics weakly-collisional plasma in a wide variety of circumstances.
Understanding the nature of the turbulent fluctuations below the ion gyroradius in solar-wind turbulence is a great challenge. Recent studies have been mostly in favor of kinetic Alfven wave (KAW) type of fluctuations, but other kinds of fluctuations with characteristics typical of magnetosonic, whistler and ion Bernstein modes, could also play a role depending on the plasma parameters. Here we investigate the properties of the sub-proton-scale cascade with high-resolution hybrid-kinetic simulations of freely-decaying turbulence in 3D3V phase space, including electron inertia effects. Two proton plasma beta are explored: the intermediate $beta_p=1$ and low $beta_p=0.2$ regimes, both typically observed in solar wind and corona. The magnetic energy spectum exhibits $k_perp^{-8/3}$ and $k_|^{-7/2}$ power laws at $beta_p=1$, while they are slightly steeper at $beta_p=0.2$. Nevertheless, both regimes develop a spectral anisotropy consistent with $k_|sim k_perp^{2/3}$ at $k_perprho_p>1$, and pronounced small-scale intermittency. In this context, we find that the kinetic-scale cascade is dominated by KAW-like fluctuations at $beta_p=1$, whereas the low-$beta$ case presents a more complex scenario suggesting the simultaneous presence of different types of fluctuations. In both regimes, however, a non-negligible role of ion Bernstein type of fluctuations at the smallest scales seems to emerge.
Plasma turbulence is investigated using high-resolution ion velocity distributions measured by the Magnetospheric Multiscale Mission (MMS) in the Earths magnetosheath. The particle distribution is highly structured, suggesting a cascade-like process in velocity space. This complex velocity space structure is investigated using a three-dimensional Hermite transform that reveals a power law distribution of moments. In analogy to hydrodynamics, a Kolmogorov approach leads directly to a range of predictions for this phase-space cascade. The scaling theory is in agreement with observations, suggesting a new path for the study of plasma turbulence in weakly collisional space and astrophysical plasmas.
The analysis of the Parker-Moffatt problem, recently revisited in Pezzi et al. (2016), is here extended by including the Hall magnetohydrodynamics and two hybrid kinetic Vlasov-Maxwell numerical models. The presence of dispersive and kinetic features is studied in detail and a comparison between the two kinetic codes is also reported. Focus on the presence of non-Maxwellian signatures shows that - during the collision - regions characterized by strong temperature anisotropy are recovered and the proton distribution function displays a beam along the direction of the magnetic field, similar to some recent observations of the solar wind.
The interaction of two colliding Alfven wave packets is here described by means of magnetohydrodynamics (MHD) and hybrid kinetic numerical simulations. The MHD evolution revisits the theoretical insights described by Moffatt, Parker, Kraichnan, Chand rasekhar and Elsasser in which the oppositely propagating large amplitude wave packets interact for a finite time, initiating turbulence. However, the extension to include compressive and kinetic effects, while maintaining the gross characteristics of the simpler classic formulation, also reveals intriguing features which go beyond the pure MHD treatment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا