ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce a minimalist dynamical model of wealth evolution and wealth sharing among $N$ agents as a platform to compare the relative merits of altruism and individualism. In our model, the wealth of each agent independently evolves by diffusion. F or a population of altruists, whenever any agent reaches zero wealth (that is, the agent goes bankrupt), the remaining wealth of the other $N-1$ agents is equally shared among all. The population is collectively defined to be bankrupt when its total wealth falls below a specified small threshold value. For individualists, each time an agent goes bankrupt (s)he is considered to be dead and no wealth redistribution occurs. We determine the evolution of wealth in these two societies. Altruism leads to more global median wealth at early times; eventually, however, the longest-lived individualists accumulate most of the wealth and are richer and more long lived than the altruists.
Cooperative interactions pervade the dynamics of a broad rage of many-body systems, such as ecological communities, the organization of social structures, and economic webs. In this work, we investigate the dynamics of a simple population model that is driven by cooperative and symmetric interactions between two species. We develop a mean-field and a stochastic description for this cooperative two-species reaction scheme. For an isolated population, we determine the probability to reach a state of fixation, where only one species survives, as a function of the initial concentrations of the two species. We also determine the time to reach the fixation state. When each species can migrate into the population and replace a randomly selected individual, the population reaches a steady state. We show that this steady-state distribution undergoes a unimodal to trimodal transition as the migration rate is decreased beyond a critical value. In this low-migration regime, the steady state is not truly steady, but instead fluctuates strongly between near-fixation states of the two species. The characteristic time scale of these fluctuations diverges as $lambda^{-1}$.
We investigate majority rule dynamics in a population with two classes of people, each with two opinion states $pm 1$, and with tunable interactions between people in different classes. In an update, a randomly selected group adopts the majority opin ion if all group members belong to the same class; if not, majority rule is applied with probability $epsilon$. Consensus is achieved in a time that scales logarithmically with population size if $epsilongeq epsilon_c=frac{1}{9}$. For $epsilon <epsilon_c$, the population can get trapped in a polarized state, with one class preferring the $+1$ state and the other preferring $-1$. The time to escape this polarized state and reach consensus scales exponentially with population size.
We introduce and study the dynamics of an emph{immortal} critical branching process. In the classic, critical branching process, particles give birth to a single offspring or die at the same rates. Even though the average population is constant in ti me, the ultimate fate of the population is extinction. We augment this branching process with immortality by positing that either: (a) a single particle cannot die, or (b) there exists an immortal stem cell that gives birth to ordinary cells that can subsequently undergo critical branching. We discuss the new dynamical aspects of this immortal branching process.
60 - Zhijie Feng , S. Redner 2020
We present and analyze a minimalist model for the vertical transport of people in a tall building by elevators. We focus on start-of-day operation in which people arrive at the ground floor of the building at a fixed rate. When an elevator arrives on the ground floor, passengers enter until the elevator capacity is reached, and then they are transported to their destination floors. We determine the distribution of times that each person waits until an elevator arrives, the number of people waiting for elevators, and transition to synchrony for multiple elevators when the arrival rate of people is sufficiently large. We validate many of our predictions by event-driven simulations.
We combine the processes of resetting and first-passage to define emph{first-passage resetting}, where the resetting of a random walk to a fixed position is triggered by a first-passage event of the walk itself. In an infinite domain, first-passage r esetting of isotropic diffusion is non-stationary, with the number of resetting events growing with time as $sqrt{t}$. We calculate the resulting spatial probability distribution of the particle analytically, and also obtain this distribution by a geometric path decomposition. In a finite interval, we define an optimization problem that is controlled by first-passage resetting; this scenario is motivated by reliability theory. The goal is to operate a system close to its maximum capacity without experiencing too many breakdowns. However, when a breakdown occurs the system is reset to its minimal operating point. We define and optimize an objective function that maximizes the reward (being close to maximum operation) minus a penalty for each breakdown. We also investigate extensions of this basic model to include delay after each reset and to two dimensions. Finally, we study the growth dynamics of a domain in which the domain boundary recedes by a specified amount whenever the diffusing particle reaches the boundary after which a resetting event occurs. We determine the growth rate of the domain for the semi-infinite line and the finite interval and find a wide range of behaviors that depend on how much the recession occurs when the particle hits the boundary.
We investigate classic diffusion with the added feature that a diffusing particle is reset to its starting point each time the particle reaches a specified threshold. In an infinite domain, this process is non-stationary and its probability distribut ion exhibits rich features. In a finite domain, we define a non-trivial optimization in which a cost is incurred whenever the particle is reset and a reward is obtained while the particle stays near the reset point. We derive the condition to optimize the net gain in this system, namely, the reward minus the cost.
113 - P. L. Krapivsky , S. Redner 2020
We investigate parking in a one-dimensional lot, where cars enter at a rate $lambda$ and each attempts to park close to a target at the origin. Parked cars also depart at rate 1. An entering driver cannot see beyond the parked cars for more desirable open spots. We analyze a class of strategies in which a driver ignores open spots beyond $tau L$, where $tau$ is a risk threshold and $L$ is the location of the most distant parked car, and attempts to park at the first available spot encountered closer than $tau L$. When all drivers use this strategy, the probability to park at the best available spot is maximal when $tau=frac{1}{2}$, and parking at the best available spot occurs with probability $frac{1}{4}$.
144 - S. Redner 2019
We discuss the hot hand paradox within the framework of the backward Kolmogorov equation. We use this approach to understand the apparently paradoxical features of the statistics of fixed-length sequences of heads and tails upon repeated fair coin fl ips. In particular, we compute the average waiting time for the appearance of specific sequences. For sequences of length 2, the average time until the appearance of the sequence HH (heads-heads) equals 6, while the waiting time for the sequence HT (heads-tails) equals 4. These results require a few simple calculational steps by the Kolmogorov approach. We also give complete results for sequences of lengths 3, 4, and 5; the extension to longer sequences is straightforward (albeit more tedious). Finally, we compute the waiting times $T_{nrm H}$ for an arbitrary length sequences of all heads and $T_{nrm(HT)}$ for the sequence of alternating heads and tails. For large $n$, $T_{2nrm H}sim 3 T_{nrm(HT)}$.
53 - Deepak Bhat , S. Redner 2019
We introduce a socially motivated extension of the voter model in which individual voters are also influenced by two opposing, fixed-opinion news sources. These sources forestall consensus and instead drive the population to a politically polarized s tate, with roughly half the population in each opinion state. Two types social networks for the voters are studied: (a) the complete graph of $N$ voters and, more realistically, (b) the two-clique graph with $N$ voters in each clique. For the complete graph, many dynamical properties are soluble within an annealed-link approximation, in which a link between a news source and a voter is replaced by an average link density. In this approximation, we show that the average consensus time grows as $N^alpha$, with $alpha = pell/(1-p)$. Here $p$ is the probability that a voter consults a news source rather than a neighboring voter, and $ell$ is the link density between a news source and voters, so that $alpha$ can be greater than 1. The polarization time, namely, the time to reach a politically polarized state from an initial strong majority state, is typically much less than the consensus time. For voters on the two-clique graph, either reducing the density of interclique links or enhancing the influence of news sources again promotes polarization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا