ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a global analysis of the observed Z_c, Z_cs and future Z_css-like spectra using the inverse Laplace transform (LSR) version of QCD spectral sum rules (QSSR) within stability criteria. Integrated compact QCD expressions of the LO spectral f unctions up to dimension-six condensates are given. Next-to-Leading Order (NLO) factorized perturbative contributions are included. We re-emphasize the importance to include PT radiative corrections (though numerically small) for heavy quark sum rules in order to justify the (ad hoc) definition and value of the heavy quark mass used frequently at LO in the literature. We also demonstrate that, contrary to a naive qualitative 1/N_c counting, the two-meson scattering contributions to the four-quark spectral functions are numerically negligible confirming the reliability of the LSR predictions. Our results are summarized in Tables III to VI. The Z_c(3900) and Z_cs(3983) spectra are well reproduced by the T_c(3900) and T_cs(3973) tetramoles (superposition of quasi-degenerated molecules and tetraquark states having the same quantum numbers and with almost equal couplings to the currents). The Z_c(4025) or Z_c(4040) state can be fitted with the D*_0D_1 molecule having a mass 4023(130) MeV while the Z_cs bump around 4.1 GeV can be likely due to the (D^*_s0D_1+ D^*_0D_s1) molecules. The Z_c(4430) can be a radial excitation of the Z_c(3900) weakly coupled to the current, while all strongly coupled ones are in the region (5634-6527) MeV. The double strange tetramole state T_css which one may identify with the future Z_css is predicted to be at 4064(46) MeV. It is remarkable to notice the regular mass-spliitings of the tetramoles due to SU(3) breakings M_{T_cs}-M_{T_c}= M_{T_css}-M_{T_cs= (73- 91) MeV.
We revisit, improve and complete some recent estimates of the $0^{+}$ and $1^-$ open charm $(bar c bar d)(us)$ tetraquarks and the corresponding molecules masses and decay constants from QCD spectral sum rules (QSSR) by using QCD Laplace sum rule (LS R) within stability criteria where the factorised perturbative NLO corrections and the contributions of quark and gluon condensates up to dimension-6 in the OPE are included. We confront our results with the $D^-K^+$ invariant mass recently reported by LHCb from $B^+to D^+(D^-K^+)$ decays. We expect that the bump near the $D^-K^+$ threshold can be originated from the $0^{++}(D^-K^+)$ molecule and/or $D^-K^+$ scattering. The prominent $X_{0}$(2900) scalar peak and the bump $X_J(3150)$ (if $J=0$) can emerge from a {it minimal mixing model}, with a tiny mixing angle $theta_0simeq (5.2pm 1.9)^0$, between a scalar {it Tetramole} (${cal T_M}_0$) (superposition of nearly degenerated hypothetical molecules and compact tetraquarks states with the same quantum numbers) having a mass $M_{{cal T_M}_0}$=2743(18) MeV and the first radial excitation of the $D^-K^+$ molecule with mass $M_{(DK)_1}=3678(310)$ MeV. In an analogous way, the $X_1$(2900) and the $X_J(3350)$ (if $J=1$) could be a mixture between the vector {it Tetramole} $({cal T_M}_1)$ with a mass $M_{{cal T_M}_1}=2656(20)$ MeV and its first radial excitation having a mass $M_{({cal T_M}_1)_1}=4592(141)$ MeV with an angle $theta_1simeq (9.1pm 0.6)^0$. A (non)-confirmation of the previous {it minimal mixing models} requires an experimental identification of the quantum numbers of the bumps at 3150 and 3350 MeV.
Alerted by the recent LHCb discovery of exotic hadrons in the range (6.2 -- 6.9) GeV, we present new results for the doubly-hidden scalar heavy $(bar QQ) (Qbar Q)$ charm and beauty molecules using the inverse Laplace transform sum rule (LSR) within s tability criteria and including the Next-to-Leading Order (NLO) factorized perturbative and $langle G^3rangle$ gluon condensate corrections. We also critically revisit and improve existing Lowest Order (LO) QCD spectral sum rules (QSSR) estimates of the $({ bar Q bar Q})(QQ)$ tetraquarks analogous states. In the example of the anti-scalar-scalar molecule, we separate explicitly the contributions of the factorized and non-factorized contributions to LO of perturbative QCD and to the $langlealpha_sG^2rangle$ gluon condensate contributions in order to disprove some criticisms on the (mis)uses of the sum rules for four-quark currents. We also re-emphasize the importance to include PT radiative corrections for heavy quark sum rules in order to justify the (ad hoc) definition and value of the heavy quark mass used frequently at LO in the literature. Our LSR results for tetraquark masses summarized in Table II are compared with the ones from ratio of moments (MOM) at NLO and results from LSR and ratios of MOM at LO (Table IV). The LHCb broad structure around (6.2 --6.7) GeV can be described by the $overline{eta}_{c}{eta}_{c}$, $overline{J/psi}{J/psi}$ and $overline{chi}_{c1}{chi}_{c1}$ molecules or/and their analogue tetraquark scalar-scalar, axial-axial and vector-vector lowest mass ground states. The peak at (6.8--6.9) GeV can be likely due to a $overline{chi}_{c0}{chi}_{c0}$ molecule or/and a pseudoscalar-pseudoscalar tetraquark state. Similar analysis is done for the scalar beauty states whose masses are found to be above the $overlineeta_beta_b$ and $overlineUpsilon(1S)Upsilon(1S)$ thresholds.
Using an effective sigma/f_0(500) resonance, which describes the pipi-->pipi and gammagamma-->pipi scattering data, we evaluate its contribution and the ones of the other scalar mesons to the the hadronic light-by-light (HLbL) scattering component of the anomalous magnetic moment a_mu of the muon. We obtain the conservative range of values: sum_S~a_mu^{lbl}vert_S = -(4.51+- 4.12) 10^{-11}, which is dominated by the sigma/f_0(500) contribution ( 50%~98%), and where the large error is due to the uncertainties on the parametrisation of the form factors. Considering our new result, we update the sum of the different theoretical contributions to a_mu within the standard model, which we then compare to experiment. This comparison gives (a_mu^{rm exp} - a_mu^{SM})= +(312.1+- 64.3) 10^{-11}, where the theoretical errors from HLbL are dominated by the scalar meson contributions.
140 - R. Albuquerque 2017
We present new compact integrated expressions of SU3 breaking corrections to QCD spectral functions of heavy-light molecules and four-quark XYZ-like states at lowest order (LO) of perturbative (PT) QCD and up to d=8 condensates of the OPE. Including N2LO PT corrections in the chiral limit and NLO SU3 PT corrections, which we have estimated by assuming the factorization of the four-quark spectral functions, we improve previous LO results for the XYZ-like masses and decay constants from QCD spectral sum rules. Systematic errors are estimated from a geometric growth of the higher order PT corrections and from some partially known d=8 non-perturbative contributions. Our optimal results, based on stability criteria, are summarized in Tables 18 to 21 and compared with some LO results in Table 22. In most channels, the SU3 corrections on the meson masses are tiny: < 10% (resp. <3%) for the c (resp. b)-quark channel but can be large for the couplings (< 20%). Within the lowest dimension currents, most of the 0^{++} and 1^{++} states are below the physical thresholds while our predictions cannot discriminate a molecule from a four-quark state. A comparison with the masses of some experimental candidates indicates that the 0^{++} X(4500) might have a large D^*_{s0}D^*_{s0} molecule component while an interpretation of the 0^{++} candidates as four-quark ground states is not supported by our findings. The 1^{++} X(4147) and X(4273) are compatible with the D^*_{s}D_{s}, bar D^*_{s0}D_{s1} molecules and/or with the axial-vector A_c four-quark ground state. Our results for the 0^{-pm}, 1^{-pm} and for different beauty states can be tested in the future data. Finally, we revisit our previous estimates [1] for the D^*_{0}D^*_{0} and D^*_{0}D_{1} and present new results for the D_1D_1.
These talks review and summarize our results in [1,2] on $XYZ$-like spectra obtained from QCD Laplace Sum Rules in the chiral limit at next-to-next-leading order (N2LO) of perturbation theory (PT) and including leading order (LO) contributions of dim ensions $dleq 6-8$ non-perturbative condensates. We conclude that the observed $XZ$ states are good candidates for $1^{+}$ and $0^+$ molecules or / and four-quark states while the predictions for $1^-$ and $0^-$ states are about 1.5 GeV above the $Y_{c,b}$ experimental candidates and hadronic thresholds. We (numerically) find that these exotic molecules couple weakly to the corresponding interpolating currents than ordinary $D,B$ heavy-light mesons while we observe that these couplings decrease faster [$1/m_b^{3/2}$ (resp. $1/m_b$) for the $1^+,0^+$ (resp. $1^-,0^-)$ states] than $1/m_b^{1/2}$. Our results do not also confirm the existence of the $X(5568)$ state in agreement with LHCb findings.
We present new compact integrated expressions of QCD spectral functions of heavy-light molecules and four-quark $XYZ$-like states at lowest order (LO) of perturbative (PT) QCD and up to $d=8$ condensates of the Operator Product Expansion (OPE). Then, by including up to next-to-next leading order (N2LO) PT QCD corrections, which we have estimated by assuming the factorization of the four-quark spectral functions, we improve previous LO results from QCD spectral sum rules (QSSR), on the $XYZ$-like masses and decay constants which suffer from the ill-defined heavy quark mass. PT N3LO corrections are estimated using a geometric growth of the PT series and are included in the systematic errors. Our optimal results based on stability criteria are summarized in Tables 11 to 14 and compared, in Section 10, with experimental candidates and some LO QSSR results. We conclude that the masses of the $XZ$ observed states are compatible with (almost) pure $J^{PC}=1^{+pm}, 0^{++}$ molecule or/and four-quark states. The ones of the $1^{-pm}, 0^{-pm}$ molecule / four-quark states are about 1.5 GeV above the $Y_{c,b}$ mesons experimental candidates and hadronic thresholds. We also find that the couplings of these exotics to the associated interpolating currents are weaker than that of ordinary $D,B$ mesons ($f_{DD}approx 10^{-3}f_D$) and may behave numerically as $1/ bar m_b^{3/2}$ (resp. $1/ bar m_b$) for the $1^{+},0^{+}$ (resp. $1^{-}, 0^{-}$) states which can stimulate further theoretical studies of these decay constants.
We have studied, using double ratio of QCD (spectral) sum rules, the ratio between the masses of $T_{cc}$ and X(3872) assuming that they are respectively described by the $D-{D}^*$ and $D-bar{D}^*$ molecular currents. We found (within our approximati on) that the masses of these two states are almost degenerate. Since the pion exchange interaction between these mesons is exactly the same, we conclude that if the observed X(3872) meson is a $Dbar{D}^*+c.c.$ molecule, then the $DD^*$ molecule should also exist with approximately the same mass. An extension of the analysis to the $b$-quark case leads to the same conclusion. We also study the SU(3) breakings for the $T^s_{QQ}/T_{QQ}$ mass ratios. Motivated by the recent Belle observation of two $Z_b$ states, we revise our determination of $X_b$ by combining results from exponential and FESR sum rules.
95 - G. Mennessier 2010
We extract the pole positions, hadronic and gamma-gamma widths of sigma and f_0(980, from pi-pi and gamma-gamma scattering data using an improved analytic K-matrix model. Our results favour a large gluon component for the sigma and a bar ss or/and gl uon component for the f_0(980) but neither a large four-quark nor a molecule component. Gluonium sigma_B production from J/psi, phi radiative and D_s semi-leptonic decays are also discussed.
We extract directly (for the first time) the charmed (C=1) and bottom (B=-1) heavy-baryons (spin 1/2 and 3/2) mass-splittings due to SU(3) breaking using double ratios of QCD spectral sum rules (QSSR) in full QCD, which are less sensitive to the exac t value and definition of the heavy quark mass, to the perturbative radiative corrections and to the QCD continuum contributions than the simple ratios commonly used for determining the heavy baryon masses. Noticing that most of the mass-splittings are mainly controlled by the ratio kappa= <bar ss>/<bar dd> of the condensate, we extract this ratio, by allowing 1 sigma deviation from the observed masses of the Xi_{c,b} and of the Omega_c. We obtain: kappa=0.74(3), which improves the existing estimates: kappa=0.70(10) from light hadrons. Using this value, we deduce M_{Omega_b}=6078.5(27.4) MeV which agrees with the recent CDF data but disagrees by 2.4 sigma with the one from D0. Predictions of the Xi_Q and of the spectra of spin 3/2 baryons containing one or two strange quark are given in Table 2. Predictions of the hyperfine splittings Omega*_Q- Omega_Q and Xi*_Q-Xi_Q are also given in Table 3. Starting for a general choice of the interpolating currents for the spin 1/2 baryons, our analysis favours the optimal value of the mixing angle b= (-1/5 -- 0) found from light and non-strange heavy baryons.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا