ترغب بنشر مسار تعليمي؟ اضغط هنا

Doubly-hidden scalar heavy molecules and tetraquarks states from QCD at NLO

178   0   0.0 ( 0 )
 نشر من قبل Stephan Narison
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Alerted by the recent LHCb discovery of exotic hadrons in the range (6.2 -- 6.9) GeV, we present new results for the doubly-hidden scalar heavy $(bar QQ) (Qbar Q)$ charm and beauty molecules using the inverse Laplace transform sum rule (LSR) within stability criteria and including the Next-to-Leading Order (NLO) factorized perturbative and $langle G^3rangle$ gluon condensate corrections. We also critically revisit and improve existing Lowest Order (LO) QCD spectral sum rules (QSSR) estimates of the $({ bar Q bar Q})(QQ)$ tetraquarks analogous states. In the example of the anti-scalar-scalar molecule, we separate explicitly the contributions of the factorized and non-factorized contributions to LO of perturbative QCD and to the $langlealpha_sG^2rangle$ gluon condensate contributions in order to disprove some criticisms on the (mis)uses of the sum rules for four-quark currents. We also re-emphasize the importance to include PT radiative corrections for heavy quark sum rules in order to justify the (ad hoc) definition and value of the heavy quark mass used frequently at LO in the literature. Our LSR results for tetraquark masses summarized in Table II are compared with the ones from ratio of moments (MOM) at NLO and results from LSR and ratios of MOM at LO (Table IV). The LHCb broad structure around (6.2 --6.7) GeV can be described by the $overline{eta}_{c}{eta}_{c}$, $overline{J/psi}{J/psi}$ and $overline{chi}_{c1}{chi}_{c1}$ molecules or/and their analogue tetraquark scalar-scalar, axial-axial and vector-vector lowest mass ground states. The peak at (6.8--6.9) GeV can be likely due to a $overline{chi}_{c0}{chi}_{c0}$ molecule or/and a pseudoscalar-pseudoscalar tetraquark state. Similar analysis is done for the scalar beauty states whose masses are found to be above the $overlineeta_beta_b$ and $overlineUpsilon(1S)Upsilon(1S)$ thresholds.

قيم البحث

اقرأ أيضاً

We present a global analysis of the observed Z_c, Z_cs and future Z_css-like spectra using the inverse Laplace transform (LSR) version of QCD spectral sum rules (QSSR) within stability criteria. Integrated compact QCD expressions of the LO spectral f unctions up to dimension-six condensates are given. Next-to-Leading Order (NLO) factorized perturbative contributions are included. We re-emphasize the importance to include PT radiative corrections (though numerically small) for heavy quark sum rules in order to justify the (ad hoc) definition and value of the heavy quark mass used frequently at LO in the literature. We also demonstrate that, contrary to a naive qualitative 1/N_c counting, the two-meson scattering contributions to the four-quark spectral functions are numerically negligible confirming the reliability of the LSR predictions. Our results are summarized in Tables III to VI. The Z_c(3900) and Z_cs(3983) spectra are well reproduced by the T_c(3900) and T_cs(3973) tetramoles (superposition of quasi-degenerated molecules and tetraquark states having the same quantum numbers and with almost equal couplings to the currents). The Z_c(4025) or Z_c(4040) state can be fitted with the D*_0D_1 molecule having a mass 4023(130) MeV while the Z_cs bump around 4.1 GeV can be likely due to the (D^*_s0D_1+ D^*_0D_s1) molecules. The Z_c(4430) can be a radial excitation of the Z_c(3900) weakly coupled to the current, while all strongly coupled ones are in the region (5634-6527) MeV. The double strange tetramole state T_css which one may identify with the future Z_css is predicted to be at 4064(46) MeV. It is remarkable to notice the regular mass-spliitings of the tetramoles due to SU(3) breakings M_{T_cs}-M_{T_c}= M_{T_css}-M_{T_cs= (73- 91) MeV.
In this work, we systematically study the mass spectrum of the fully heavy tetraquark in an extended chromomagnetic model, which includes both color and chromomagnetic interactions. Numerical results indicate that the energy level is mainly determine d by the color interaction, which favors the color-sextet $ket{(QQ)^{6_{c}}(bar{Q}bar{Q})^{bar{6}_{c}}}$ configuration over the color-triplet $ket{(QQ)^{bar{3}_{c}}(bar{Q}bar{Q})^{3_{c}}}$ one. The chromomagnetic interaction mixes the two color configurations and gives small splitting. The ground state is always dominated by the color-sextet configuration. We find no stable state below the lowest heavy quarkonium pair thresholds. Most states may be wide since they have at least one $S$-wave decay channel into two $S$-wave mesons. One possible narrow state is the $1^{+}$ $bbbar{b}bar{c}$ state with a mass $15719.1~text{MeV}$. It is just above the $eta_{b}bar{B}_{c}$ threshold. But this channel is forbidden because of the conservation of the angular momentum and parity.
With the spin rearrangement, we have performed a comprehensive investigation of the decay patterns of the S-wave tetraquarks and P-wave tetraquarks where the P-wave excitation exists either between the diquark and anti-diquark pair or inside the diqu ark. Especially, we compare the decay patterns of $Y(4260)$ with different inner structures such as the conventional charmonium, the molecule, the P-wave tetraquark and the hybrid charmonium. We notice the $J/psi pipi$ mode is suppressed in the heavy quark symmetry limit if $Y(4260)$ is a molecular state. Moreover the hybrid charmonium and hidden-charm tetraquark have very similar decay patterns. Both of them decay into the $J/psi pipi$ and open charm modes easily. We also discuss the decay patterns of $X(3872)$, $Y(4360)$, and several charged states such as $Z_c(4020)$. The $h_cpi^{pm}$ decay mode disfavors the tetraquark assumption of $Z_c(4020)$.
We revisit, improve and complete some recent estimates of the $0^{+}$ and $1^-$ open charm $(bar c bar d)(us)$ tetraquarks and the corresponding molecules masses and decay constants from QCD spectral sum rules (QSSR) by using QCD Laplace sum rule (LS R) within stability criteria where the factorised perturbative NLO corrections and the contributions of quark and gluon condensates up to dimension-6 in the OPE are included. We confront our results with the $D^-K^+$ invariant mass recently reported by LHCb from $B^+to D^+(D^-K^+)$ decays. We expect that the bump near the $D^-K^+$ threshold can be originated from the $0^{++}(D^-K^+)$ molecule and/or $D^-K^+$ scattering. The prominent $X_{0}$(2900) scalar peak and the bump $X_J(3150)$ (if $J=0$) can emerge from a {it minimal mixing model}, with a tiny mixing angle $theta_0simeq (5.2pm 1.9)^0$, between a scalar {it Tetramole} (${cal T_M}_0$) (superposition of nearly degenerated hypothetical molecules and compact tetraquarks states with the same quantum numbers) having a mass $M_{{cal T_M}_0}$=2743(18) MeV and the first radial excitation of the $D^-K^+$ molecule with mass $M_{(DK)_1}=3678(310)$ MeV. In an analogous way, the $X_1$(2900) and the $X_J(3350)$ (if $J=1$) could be a mixture between the vector {it Tetramole} $({cal T_M}_1)$ with a mass $M_{{cal T_M}_1}=2656(20)$ MeV and its first radial excitation having a mass $M_{({cal T_M}_1)_1}=4592(141)$ MeV with an angle $theta_1simeq (9.1pm 0.6)^0$. A (non)-confirmation of the previous {it minimal mixing models} requires an experimental identification of the quantum numbers of the bumps at 3150 and 3350 MeV.
Accessing the polarization of weak bosons provides an important probe for the mechanism of electroweak symmetry breaking. Relying on the double-pole approximation and on the separation of polarizations at the amplitude level, we study WZ production a t the LHC, with both bosons in a definite polarization mode, including NLO QCD effects. We compare results obtained defining the polarization vectors in two different frames. Integrated and differential cross-sections in a realistic fiducial region are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا