ترغب بنشر مسار تعليمي؟ اضغط هنا

The next generation of TeV detectors is expected to have a significantly enhanced performance. It is therefore constructive to search for new TeV candidates for observation. This paper focuses on TeV candidates among the high-synchrotron-peaked BL La certae objects (HBLs) reported in the fourth catalog of active galactic nuclei detected by the Fermis Large Area Telescope, i.e., 4LAC. By cross-matching the Fermi data with radio and optical observations, we collected the multiwavelength features of 180 HBLs with known redshift. The data set contains 39 confirmed TeV sources and 141 objects whose TeV detection has not yet been reported (either not yet observed, or observed but not detected). Using two kinds of supervised machine-learning (SML) methods, we searched for new possible TeV candidates (PTCs) among the nondetected objects by assessing the similarity of their multi-wavelength properties to existing TeV-detected objects. The classification results of the two SML classifiers were combined and the 24 highest-confidence PTCs were proposed as the best candidates. We calculate, here, the 12 year averaged Fermi spectra of these PTCs and estimate their detectability by extrapolating the Fermi spectrum and including the extragalactic background light attenuation. Four candidates are suggested to have a high likelihood of being detected by the Large High Altitude Air Shower Observatory and 24 are candidates for the Cerenkov Telescope Array observations.
The jets of blazars are renowned for their multi-wavelength flares and rapid extreme variability; however, there are still some important unanswered questions about the physical processes responsible for these spectral and temporal changes in emissio n properties. In this paper, we develop a time-dependent particle evolution model for the time-varying emission spectrum of blazars. In the model, we introduce time-dependent electric and magnetic fields, which consistently include the variability of relevant physical quantities in the transport equation. The evolution on the electron distribution is numerically solved from a generalized transport equation that contains the terms describing the electrostatic, first-order and second-order emph{Fermi} acceleration, escape of particles due to both advection and spatial diffusion, as well as energy losses due to the synchrotron emission and inverse-Compton scattering of both synchrotron and external ambient photon fields. We find that the light curve profiles of blazars are consistent with the particle spectral evolution resulting from time-dependent electric and magnetic fields, rather than the effects of the acceleration or the cooling processes. The proposed model is able to simultaneously account for the variability of both the energy spectrum and the light curve profile of the BL Lac object Mrk 421 with reasonable assumptions about the physical parameters. The results strongly indicate that the magnetic field evolution in the dissipated region of a blazar jet can account for the variabilities.
There are still some important unanswered questions about the detailed particle acceleration and escape occurring during the quiescent epoches. As a result, the particle distribution that is adopted in the blazar quiescent spectral model have numerou s unconstrained shapes. To help remedy this problem, we introduce a analytical particle transport model to reproduce quiescent broadband spectral energy distribution of blazar. In this model, the exact electron distribution is solved from a generalized transport equation that contains the terms describing first-order and secondary-order emph{Fermi} acceleration, escape of particle due to both the advection and spatial diffusion, energy losses due to synchrotron emission and inverse-Compton scattering of an assumed soft photon field. We suggest that the advection is a significant escape mechanism in blazar jet. We find that in our model the advection process tends to harden the particle distribution, which enhances the high energy components of resulting synchrotron and synchrotron self-Comptom spectrum from jet. Our model is able to roughly reproduce the observed spectra of extreme BL Lac object 1ES 0414+009 with reasonable assumptions about the physical parameters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا