ترغب بنشر مسار تعليمي؟ اضغط هنا

The static properties, i.e., existence and stability, as well as the quench-induced dynamics of nonlinear excitations of the vortex-bright type appearing in two-dimensional harmonically confined spin-1 Bose-Einstein condensates are investigated. Line arly stable vortex-bright-vortex and bright-vortex-bright solutions arise in both antiferromagnetic and ferromagnetic spinor gases upon quadratic Zeeman energy shift variations. The precessional motion of such coherent structures is subsequently monitored dynamically. Deformations of the above configurations across the relevant transitions are exposed and discussed in detail. It is further found that stationary states involving highly quantized vortices can be realized in both settings. Spatial elongations, precessional motion and spiraling of the nonlinear excitations when exposed to finite temperatures and upon crossing the distinct phase boundaries, via quenching of the quadratic Zeeman coefficient, are unveiled. Spin-mixing processes triggered by the quench lead, among others, to changes in the waveform of the ensuing configurations. Our findings reveal an interplay between pattern formation and spin-mixing processes being accessible in contemporary cold atom experiments.
We exemplify the impact of beyond Lee-Huang-Yang (LHY) physics, especially due to intercomponent correlations, in the ground state and the quench dynamics of one-dimensional so-called quantum droplets using an ab-initio nonperturbative approach. It i s found that the droplet Gaussian-shaped configuration arising for intercomponent attractive couplings becomes narrower for stronger intracomponent repulsion and transits towards a flat-top structure either for larger particle numbers or weaker intercomponent attraction. Additionally, a harmonic trap prevents the flat-top formation. At the balance point where mean-field interactions cancel out, we show that quantum fluctuations prevent the collapse of LHY fluids for larger atom numbers and a correlation hole is present in the few particle limit of these fluids as well as for flat-top droplets. Introducing mass-imbalance, droplets experience intercomponent mixing and excitation signatures are identified for larger masses. Monitoring the droplet expansion (breathing motion) upon considering interaction quenches to stronger (weaker) attractions we explicate that beyond LHY correlations result in a reduced velocity (breathing frequency). Strikingly, the droplets feature two-body anti-correlations (correlations) at the same position (longer distances). Our findings pave the way for probing correlation-induced phenomena of droplet dynamics in current ultracold atom experiments.
Few-body correlations emerging in two-dimensional harmonically trapped mixtures, are comprehensively investigated. The presence of the trap leads to the formation of atom-dimer and trap states, in addition to trimers. The Tans contacts of these eigen states are studied for varying interspecies scattering lengths and mass ratio, while corresponding analytical insights are provided within the adiabatic hyperspherical formalism. The two- and three-body correlations of trimer states are substantially enhanced compared to the other eigenstates. The two-body contact of the atom-dimer and trap states features an upper bound regardless of the statistics, treated semi-classically and having an analytical prediction in the limit of large scattering lengths. Such an upper bound is absent in the three-body contact. Interestingly, by tuning the interspecies scattering length the contacts oscillate as the atom-dimer and trap states change character through the existent avoided-crossings in the energy spectra. For thermal gases, a gradual suppression of the involved two- and three-body correlations is evinced manifesting the impact of thermal effects. Moreover, spatial configurations of the distinct eigenstates ranging from localized structures to angular anisotropic patterns are captured. Our results provide valuable insights into the inherent correlation mechanisms of few-body mixtures which can be implemented in recent ultracold atom experiments and will be especially useful for probing the crossover from few- to many-atom systems.
We study the statistical mechanics and the dynamical relaxation process of modulationally unstable one-dimensional quantum droplets described by a modified Gross-Pitaevskii equation. To determine the classical partition function thereof, we leverage the semi-analytical transfer integral operator (TIO) technique. The latter predicts a distribution of the observed wave function amplitudes and yields two-point correlation functions providing insights into the emergent dynamics involving quantum droplets. We compare the ensuing TIO results with the probability distributions obtained at large times of the modulationally unstable dynamics as well as with the equilibrium properties of a suitably constructed Langevin dynamics. We find that the instability leads to the spontaneous formation of quantum droplets featuring multiple collisions and consecutively are found to coalesce at large evolution times. Our results from the distinct methodologies are in good agreement aside from the case of low temperatures in the special limit where the droplet widens. In this limit, the distribution acquires a pronounced bimodal character, exhibiting a deviation between the TIO solution and the Langevin dynamics still captured by the modified Gross-Pitaevskii framework.
We investigate the crossover of the impurity-induced dynamics, in trapped one-dimensional Bose polarons subject to radio frequency (rf) pulses of varying intensity, from an adiabatic to a diabatic regime. Utilizing adiabatic pulses for either weak re pulsive or attractive impurity-medium interactions, a multitude of polaronic excitations or mode-couplings of the impurity-bath interaction with the collective breathing motion of the bosonic medium are spectrally resolved. We find that for strongly repulsive impurity-bath interactions, a temporal orthogonality catastrophe manifests in resonances in the excitation spectra where impurity coherence vanishes. When two impurities are introduced, impurity-impurity correlations, for either attractive or strong repulsive couplings, induce a spectral shift of the resonances with respect to the single impurity. For a heavy impurity, the polaronic peak is accompanied by a series of equidistant side-band resonances, related to interference of the impurity spin dynamics and the sound waves of the bath. In all cases, we enter the diabatic transfer regime for an increasing bare Rabi frequency of the rf field with a Lorentzian spectral shape featuring a single polaronic resonance. The findings in this work on the effects of external trap, rf pulse and impurity-impurity interaction should have implications for the new generations of cold-atom experiments.
We study the correlated dynamics of few interacting bosonic impurities immersed in a one-dimensional harmonically trapped bosonic environment. The mixture is exposed to a time-dependent impurity-medium interaction pulse moving it across the relevant phase separation boundary. For modulation frequencies smaller than the trapping one, the system successively transits through the miscible/immiscible phases according to the driving of the impurity-medium interactions. For strong modulations, and driving from the miscible to the immiscible regime, a significant fraction of the impurities is expelled to the edges of the bath. They exhibit a strong localization behavior and tend to equilibrate. Following the reverse driving protocol, the impurities perform a breathing motion while featuring a two-body clustering and the bath is split into two incoherent parts. Interestingly, in both driving scenarios, dark-bright solitons are nucleated in the absence of correlations. A localization of the impurities around the trap center for weak impurity-impurity repulsions is revealed, which subsequently disperse into the bath for increasing interactions.
We present the phase diagram, the underlying stability and magnetic properties as well as the dynamics of nonlinear solitary wave excitations arising in the distinct phases of a harmonically confined spinor $F=1$ Bose-Einstein condensate. Particularl y, it is found that nonlinear excitations in the form of dark-dark-bright solitons exist in the antiferromagnetic and in the easy-axis phase of a spinor gas, being generally unstable in the former while possessing stability intervals in the latter phase. Dark-bright-bright solitons can be realized in the polar and the easy-plane phases as unstable and stable configurations respectively; the latter phase can also feature stable dark-dark-dark solitons. Importantly, the persistence of these types of states upon transitioning, by means of tuning the quadratic Zeeman coefficient from one phase to the other is unravelled. Additionally, the spin-mixing dynamics of stable and unstable matter waves is analyzed, revealing among others the coherent evolution of magnetic dark-bright, nematic dark-bright-bright and dark-dark-dark solitons. Moreover, for the unstable cases unmagnetized or magnetic droplet-like configurations and spin-waves consisting of regular and magnetic solitons are seen to dynamically emerge remaining thereafter robust while propagating for extremely large evolution times. Interestingly, exposing spinorial solitons to finite temperatures, their anti-damping in trap oscillation is showcased. It is found that the latter is suppressed for stronger bright soliton component fillings. Our investigations pave the wave for a systematic production and analysis involving spin transfer processes of such waveforms which have been recently realized in ultracold experiments.
We unravel the ground state properties and the non-equilibrium quantum dynamics of two bosonic impurities immersed in an one-dimensional fermionic environment by applying a quench of the impurity-medium interaction strength. In the ground state, the impurities and the Fermi sea are phase-separated for strong impurity-medium repulsions while they experience a localization tendency around the trap center for large attractions. We demonstrate the presence of attractive induced interactions mediated by the host for impurity-medium couplings of either sign and analyze the competition between induced and direct interactions. Following a quench to repulsive interactions triggers a breathing motion in both components, with an interaction dependent frequency and amplitude for the impurities, and a dynamical phase-separation between the impurities and their surrounding for strong repulsions. For attractive post-quench couplings a beating pattern owing its existence to the dominant role of induced interactions takes place with both components showing a localization trend around the trap center. In both quench scenarios, attractive induced correlations are manifested between non-interacting impurities and are found to dominate the direct ones only for quenches to attractive couplings.
A Faraday-wave-like parametric instability is investigated via mean-field and Floquet analysis in immiscible binary Bose-Einstein condensates. The condensates form a so-called textit{ball-shell} structure in a two-dimensional harmonic trap. To trigge r the dynamics, the scattering length of the core condensate is periodically modulated in time. We reveal that in the dynamics the interface becomes unstable towards the formation of oscillating patterns. The interface oscillates sub-harmonically exhibiting an $m$-fold rotational symmetry that can be controlled by maneuvering the amplitude and the frequency of the modulation. Using Floquet analysis we are able to predict the generated interfacial tension of the mixture and derive a dispersion relation for the natural frequencies of the emergent patterns. A heteronuclear system composed of $^{87}$Rb-$^{85}$Rb atoms can be used for the experimental realization of the phenomenon, yet our results are independent of the specifics of the employed atomic species {and of the parameter at which the driving is applied.
We unravel the correlation effects of the second-order quantum phase transitions emerging on the ground state of a harmonically trapped spin-1 Bose gas, upon varying the involved Zeeman terms, as well as its breathing dynamics triggered by quenching the trapping frequency. It is found that the boundaries of the associated magnetic phases are altered in the presence of interparticle correlations for both ferromagnetic and anti-ferromagnetic spin-spin interactions, an effect which becomes more prominent in the few-body scenario. Most importantly, we unveil a correlation-induced shrinking of the anti-ferromagnetic and broken-axisymmetry phases implying that ground states with bosons polarized in a single spin-component are favored. Turning to the dynamical response of the spinor gas it is shown that its breathing frequency is independent of the system parameters while correlations lead to the formation of filamentary patterns in the one-body density of the participating components. The number of filaments is larger for increasing spin-independent interaction strengths or for smaller particle numbers. Each filament maintains its coherence and exhibits an anti-correlated behavior while distinct filaments show significant losses of coherence and are two-body correlated. Interestingly, we demonstrate that for an initial broken-axisymmetry phase an enhanced spin-flip dynamics takes place which can be tuned either via the linear Zeeman term or the quench amplitude.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا