ﻻ يوجد ملخص باللغة العربية
A Faraday-wave-like parametric instability is investigated via mean-field and Floquet analysis in immiscible binary Bose-Einstein condensates. The condensates form a so-called textit{ball-shell} structure in a two-dimensional harmonic trap. To trigger the dynamics, the scattering length of the core condensate is periodically modulated in time. We reveal that in the dynamics the interface becomes unstable towards the formation of oscillating patterns. The interface oscillates sub-harmonically exhibiting an $m$-fold rotational symmetry that can be controlled by maneuvering the amplitude and the frequency of the modulation. Using Floquet analysis we are able to predict the generated interfacial tension of the mixture and derive a dispersion relation for the natural frequencies of the emergent patterns. A heteronuclear system composed of $^{87}$Rb-$^{85}$Rb atoms can be used for the experimental realization of the phenomenon, yet our results are independent of the specifics of the employed atomic species {and of the parameter at which the driving is applied.
We observe experimentally the spontaneous formation of star-shaped surface patterns in driven Bose-Einstein condensates. Two-dimensional star-shaped patterns with $l$-fold symmetry, ranging from quadrupole ($l=2$) to heptagon modes ($l=7$), are param
In this work, we explore systematically various SO(2)-rotation-induced multiple dark-dark soliton breathing patterns obtained from stationary and spectrally stable multiple dark-bright and dark-dark waveforms in trapped one-dimensional, two-component
We study the changes in the spatial distribution of vortices in a rotating Bose-Einstein condensate due to an increasing anisotropy of the trapping potential. Once the rotational symmetry is broken, we find that the vortex system undergoes a rich var
Matter-wave interference mechanisms in one-dimensional Bose-Einstein condensates that allow for the controlled generation of dark soliton trains upon choosing suitable box-type initial configurations are described. First, the direct scattering proble
Inspired by investigations of Bose-Einstein condensates (BECs) produced in the Cold Atom Laboratory (CAL) aboard the International Space Station, we present a study of thermodynamic properties of shell-shaped BECs. Within the context of a spherically