ترغب بنشر مسار تعليمي؟ اضغط هنا

We report a comprehensive investigation of Ln2NiIrO6 (Ln = La, Pr, Nd) using thermodynamic and transport properties, neutron powder diffraction, resonant inelastic x-ray scattering, and density functional theory (DFT) calculations to investigate the role of A-site cations on the magnetic interactions in this family of hybrid 3d-5d-4f compositions. Magnetic structure determination using neutron diffraction reveals antiferromagnetism for La2NiIrO6, a collinear ferrimagnetic Ni/Ir state that is driven to long range antiferromagnetism upon the onset of Nd ordering in Nd2NiIrO6, and a non-collinear ferrimagnetic Ni/Ir sublattice interpenetrated by a ferromagnetic Pr lattice for Pr2NiIrO6. For Pr2NiIrO6 heat capacity results reveal the presence of two independent magnetic sublattices and transport resistivity indicates insulating behavior and a conduction pathway that is thermally mediated. First principles DFT calculation elucidates the existence of the two independent magnetic sublattices within Pr2NiIrO6 and offers insight into the behavior in La2NiIrO6 and Nd2NiIrO6. Resonant inelastic x-ray scattering is consistent with spin-orbit coupling splitting the t2g manifold of octahedral Ir4+ into a Jeff = 1/2 and Jeff = 3/2 state for all members of the series considered.
Two-dimensional van der Waals compounds with magnetic ions on a honeycomb lattice are hosts to a variety of exotic behavior. The magnetic interactions in one such compound, MnPSe$_3$, are investigated with elastic and inelastic neutron scattering. Ma gnetic excitations are observed in the magnetically ordered regime and persist to temperatures well above the ordering temperature, $rm T_N$ = 74 K, consistent with low dimensional magnetic interactions. The inelastic neutron scattering results allow a model spin Hamiltonian to be presented that includes dominant intralayer interactions of $J_{1ab}$=0.45 meV, $J_{2ab}$=0.03 meV, $J_{3ab}$=0.19 meV, and appreciable interlayer interactions of $J_c$=0.031(5) meV. No evidence for anisotropy in the form of a spin-gap is observed in the data collected. The measurements on MnPSe$_3$ are contrasted with those on MnPS$_3$ and reveal a large increase in the interlayer exchange interactions in MnPSe$_3$, despite the quasi-2D magnetic behavior.
368 - S. Calder , A. V. Haglund , Y. Liu 2020
Compounds with two-dimensional (2D) layers of magnetic ions weakly connected by van der Waals bonding offer routes to enhance quantum behavior, stimulating both fundamental and applied interest. CrPS4 is one such magnetic van der Waals material, howe ver, it has undergone only limited investigation. Here we present a comprehensive series of neutron scattering measurements to determine the magnetic structure and exchange interactions. The observed magnetic excitations allow a high degree of constraint on the model parameters not normally associated with measurements on a powder sample. The results demonstrate the 2D nature of the magnetic interactions, while also revealing the importance of interactions along 1D chains within the layers. The subtle role of competing interactions is observed, which manifest in a non-trivial magnetic transition and a tunable magnetic structure in a small applied magnetic field through a spin-flop transition. Our results on the bulk compound provide insights that can be applied to an understanding of the behavior of reduced layer CrPS4.
We report for the first time the magnetic structure of the high entropy oxide $(Mg_{0.2}Co_{0.2}Ni_{0.2}Cu_{0.2}Zn_{0.2})O$ using neutron powder diffraction. This material exhibits a sluggish magnetic transition but possesses a long-range ordered ant iferromagnetic ground state, as revealed by DC and AC magnetic susceptibility, elastic and inelastic neutron scattering measurements. The magnetic propagation wavevector is k=(1/2, 1/2, 1/2) based on the cubic structure Fm-3m, and the magnetic structure consists of ferromagnetic sheets in the (111) planes with spins antiparallel between two neighboring planes. Inelastic neutron scattering reveals strong magnetic excitations at 100 K that survive up to room temperature. This work demonstrates that entropy-stabilized oxides represent a unique platform to study long range magnetic order with extreme chemical disorder.
High-resolution resonant inelastic x-ray scattering (RIXS) measurements ($Delta$E = 46 meV) have been performed on Cd$_2$Os$_2$O$_7$ through the metal-to-insulator transition (MIT). A magnetic excitation at 125 meV evolves continuously through the MI T, in agreement with recent Raman scattering results, and provides further confirmation for an all-in, all-out magnetic ground state. Asymmetry of this feature is likely a result of coupling between the electronic and magnetic degrees of freedom. We also observe a broad continuum of interband excitations centered at 0.3 eV energy loss. This is indicative of significant hybridization between Os 5$d$ and O 2$p$ states, and concurrent itinerant nature of the system. In turn, this suggests a possible break down of the free-ion model for Cd$_2$Os$_2$O$_7$.
Time-of-flight inelastic neutron scattering measurements on Sr2IrO4 single crystals were performed to access the spin Hamiltonian in this canonical Jeff=1/2 spin-orbital Mott insulator. The momentum of magnetic scattering at all inelastic energies th at were measured is revealed to be $L$-independent, indicative of idealized two-dimensional in-plane correlations. By probing the in-plane energy and momentum dependence up to ~80 meV we model the magnetic excitations and define a spin-gap of 0.6(1) meV. Collectively the results indicate that despite the strong spin-orbit entangled isospins an isotropic two-dimensional S=1/2 Heisenberg model Hamiltonian accurately describes the magnetic interactions, pointing to a robust analogy with unconventional superconducting cuprates.
The electronic ground state of Ca3LiOsO6 was recently considered within an intermediate coupling regime that revealed J=3/2 spin-orbit entangled magnetic moments. Through inelastic neutron scattering and density functional theory we investigate the m agnetic interactions and probe how the magnetism is influenced by the change in hierarchy of interactions as we move from Ca3LiOsO6 (5d3) to Ca3LiRuO6 (4d3). An alteration of the spin-gap and ordered local moment is observed, however the magnetic structure, Neel temperature and exchange interactions are unaltered. To explain this behavior it is necessary to include both spin-orbit coupling and hybridization, indicating the importance of an intermediate coupling approach when describing 5$d$ oxides.
The insulating magnetic material Fe3PO4O3 features a non-centrosymmetric lattice composed of Fe^{3+} triangular units. Frustration, due to competing near neighbor ($J_1$) and next nearest neighbor ($J_2$) antiferromagnetic interactions, was recently suggested to be the origin of an antiferromagnetic helical ground state with unusual needle-like nanoscale magnetic domains in Fe3PO4O3. Magnetic dilution is shown here to tune the ratio of these magnetic interactions, thus providing deeper insight into this unconventional antiferromagnet. Dilution of the Fe^{3+} lattice in Fe3PO4O3 was accomplished by substituting non-magnetic Ga^{3+} to form the solid solution series Fe_{3-x}Ga_xPO4O3 with $x = 0.012, 0.06, 0.25, 0.5, 1.0, 1.5$. Magnetic susceptibility and neutron powder diffraction data from this series are presented. A continuous decrease of the both the helical pitch length and the domain size is observed with increasing dilution up to at least $x = 0.25$, while for $x ge 0.5$, the compounds lack long range magnetic order entirely. The decrease in the helical pitch length with increasing $x$ can be qualitatively understood by reduction of the ratio of $J_2/J_1$ in the Heisenberg model, consistent with mean field considerations. Intriguingly, the magnetic correlation length in the $ab$ plane remains nearly equal to the pitch length for each value of $x le 0.25$, showing that the two quantities are intrinsically connected in this unusual antiferromagnet.
Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Discovering new spin-orbit entangled ground states and emergent phases of matter requires both experimentally probing the relev ant energy scales and applying suitable theoretical models. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca$_3$LiOsO$_6$ and Ba$_2$YOsO$_6$. We invoke an intermediate coupling approach that incorporates both spin-orbit coupling and electron-electron interactions on an even footing and reveal the ground state of $5d^3$ based compounds, which has remained elusive in previously applied models, is a novel spin-orbit entangled J=3/2 electronic ground state. This work reveals the hidden diversity of spin-orbit controlled ground states in 5d systems and introduces a new arena in the search for spin-orbit controlled phases of matter.
NaOsO3 hosts a rare manifestation of a metal-insulator transition driven by magnetic correlations, placing the magnetic exchange interactions in a central role. We use resonant inelastic x-ray scattering to directly probe these magnetic exchange inte ractions. A dispersive and strongly gapped (58 meV) excitation is observed indicating appreciable spin-orbit coupling in this 5d3 system. The excitation is well described within a minimal model Hamiltonian with strong anisotropy and Heisenberg exchange (J1=J2=13.9 meV). The observed behavior places NaOsO3 on the boundary between localized and itinerant magnetism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا