ترغب بنشر مسار تعليمي؟ اضغط هنا

Microcapsules are commonly used in applications ranging from therapeutics to personal care products due to their ability to deliver encapsulated species through their porous shells. Here, we demonstrate a simple and scalable approach to fabricate mic rocapsules with porous shells by interfacial complexation of cellulose nanofibrils and oleylamine, and investigate the rheological properties of suspensions of the resulting microcapsules. The suspensions of neat capsules are viscous liquids whose viscosity increases with volume fraction according to a modified Kreiger-Dougherty relation with a maximum packing fraction of 0.73 and an intrinsic viscosity of 4. When polyacrylic acid (PAA) is added to the internal phase of the microcapsule, however, the suspensions become elastic and display yield stresses with power-law dependencies on capsule volume fraction and PAA concentration. The elasticity appears to originate from associative interactions between microcapsules induced by PAA that resides within the microcapsule shells. These results demonstrate that it is possible to tune the rheological properties of microcapsule suspensions by changing only the composition of the internal phase, thereby providing a novel method to tailor complex fluid rheology.
The yielding of disordered materials is a complex transition involving significant changes of the materials microstructure and dynamics. After yielding, many soft materials recover their quiescent properties over time as they age. There remains, howe ver, a lack of understanding of the nature of this recovery. Here, we elucidate the mechanisms by which fibrillar networks restore their ability to support stress after yielding. Crucially, we observe that the aging response bifurcates around a critical stress $sigma_mathrm{c}$, which is equivalent to the material yield stress. After an initial yielding event, fibrillar networks subsequently yield faster and at lower magnitudes of stress. For stresses $sigma<sigma_mathrm{c}$, the time to yielding increases with waiting time $t_mathrm{w}$ and diverges once the network has restored sufficient entanglement density to support the stress. When $sigma > sigma_mathrm{c}$, the yield time instead plateaus at a finite value because the developed network density is insufficient to support the applied stress. We quantitatively relate the yielding and aging behavior of the network to the competition between stress-induced disentanglement and dynamic fluctuations of the fibrils rebuilding the network. The bifurcation in the material response around $sigma_c$ provides a new possibility to more rigorously localize the yield stress in disordered materials with time-dependent behavior.
The rheological properties of emulsions are of considerable importance in a diverse range of scenarios. Here we describe a superposition of the effects of droplet elasticity and volume fraction on the dynamics of emulsions. The superposition is gover ned by physical interactions between droplets, and provides a new mechanism for modifying the flow behavior of emulsions, by controlling the elasticity of the dispersed phase. We investigate the properties of suspensions of emulsified wormlike micelles (WLM). Dense suspensions of the emulsified WLM droplets exhibit thermally responsive properties in which the viscoelastic moduli decrease by an order of magnitude over a temperature range of 0 $^circ$C to 25 $^circ$C. Surprisingly, the fragility (i.e. the volume-fraction dependence of the modulus) of the emulsions does not change with temperature. Instead, the emulsion modulus scales as a power-law with volume fraction with a constant exponent across all temperatures even as the droplet properties change from elastic to viscous. Nevertheless, the underlying droplet dynamics depend strongly on temperature. From stress relaxation experiments, we quantify droplet dynamics across the cage breaking time scale below which the droplets are locally caged by neighbors and above which the droplets escape their cages to fully relax. For elastic droplets and high volume fractions, droplets relax less stress through cage rattling and the terminal relaxations are slower than for viscous droplets and lower volume fractions. The cage rattling and cage breaking dynamics are highly correlated for variations in both temperature and emulsion concentration, suggesting that thermal and volume fraction effects represent independent parameters to control emulsion properties.
We examine the dynamics of silica particles grafted with high molecular weight polystyrene suspended in semidilute solutions of chemically similar linear polymer using x-ray photon correlation spectroscopy. The particle dynamics decouple from the bul k viscosity despite their large hydrodynamic size and instead experience an effective viscosity that depends on the molecular weight of the free polymer chains. Unlike for hard sphere nanoparticles in semidilute polymer solutions, the diffusivities of the polymer-grafted nanoparticles do not collapse onto a master curve as a function of normalized length scales. These results suggest that the soft interaction potential between polymer-grafted nanoparticles and free polymer allows polymer-grafted nanoparticles to diffuse faster than predicted based on bulk rheology and modifies the coupling between grafted particle dynamics and the relaxations of the surrounding free polymer.
Gold nanorods grafted with short chain polymers are assembled into controlled open structures using polymer-induced depletion interactions and structurally characterized using small angle x-ray scattering. When the nanorod diameter is smaller than th e radius of gyration of the depletant polymer, the depletion interaction depends solely on the correlation length of the polymer solution and not directly on the polymer molecular weight. As the polymer concentration increases, the stronger depletion interactions increasingly compress the grafted chains and push the gold nanorods closer together. By contrast, other structural characteristics such as the number of nearest neighbors and fractal dimension exhibit a non-monotonic dependence on polymer concentration. These parameters are maximal at intermediate concentrations, which are attributed to a crossover from reaction-limited to diffusion-limited aggregation. The control over structural properties of anisotropic nanoscale building blocks demonstrated here will be beneficial to designing and producing materials emph{in situ} with specific direction-dependent nanoscale properties and provides a crucial route for advances in additive manufacturing.
We investigate the dynamics of nanoparticles in semidilute polymer solutions when the nanoparticles are comparably sized to the polymer coils using explicit- and implicit-solvent simulation methods. The nanoparticle dynamics are subdiffusive on short time scales before transitioning to diffusive motion on long time scales. The long-time diffusivities scale according to theoretical predictions based on full dynamic coupling to the polymer segmental relaxations. In agreement with our recent experiments, however, we observe that the nanoparticle subdiffusive exponents are significantly larger than predicted by the coupling theory over a broad range of polymer concentrations. We attribute this discrepancy in the subdiffusive regime to the presence of an additional coupling mechanism between the nanoparticle dynamics and the polymer center-of-mass motion, which differs from the polymer relaxations that control the long-time diffusion. This coupling is retained even in the absence of many-body hydrodynamic interactions when the long-time dynamics of the colloids and polymers are matched.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا