ترغب بنشر مسار تعليمي؟ اضغط هنا

Superposition of droplet elasticity and volume fraction effects on emulsion dynamics

297   0   0.0 ( 0 )
 نشر من قبل Chinedum Osuji
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The rheological properties of emulsions are of considerable importance in a diverse range of scenarios. Here we describe a superposition of the effects of droplet elasticity and volume fraction on the dynamics of emulsions. The superposition is governed by physical interactions between droplets, and provides a new mechanism for modifying the flow behavior of emulsions, by controlling the elasticity of the dispersed phase. We investigate the properties of suspensions of emulsified wormlike micelles (WLM). Dense suspensions of the emulsified WLM droplets exhibit thermally responsive properties in which the viscoelastic moduli decrease by an order of magnitude over a temperature range of 0 $^circ$C to 25 $^circ$C. Surprisingly, the fragility (i.e. the volume-fraction dependence of the modulus) of the emulsions does not change with temperature. Instead, the emulsion modulus scales as a power-law with volume fraction with a constant exponent across all temperatures even as the droplet properties change from elastic to viscous. Nevertheless, the underlying droplet dynamics depend strongly on temperature. From stress relaxation experiments, we quantify droplet dynamics across the cage breaking time scale below which the droplets are locally caged by neighbors and above which the droplets escape their cages to fully relax. For elastic droplets and high volume fractions, droplets relax less stress through cage rattling and the terminal relaxations are slower than for viscous droplets and lower volume fractions. The cage rattling and cage breaking dynamics are highly correlated for variations in both temperature and emulsion concentration, suggesting that thermal and volume fraction effects represent independent parameters to control emulsion properties.

قيم البحث

اقرأ أيضاً

In our previous publication (Ref. 1) we have shown that the data for the normalized diffusion coefficient of the polymers, $D_p/D_{p0}$, falls on a master curve when plotted as a function of $h/lambda_d$, where $h$ is the mean interparticle distance and $lambda_d$ is a dynamic length scale. In the present note we show that also the normalized diffusion coefficient of the nanoparticles, $D_N/D_{N0}$, collapses on a master curve when plotted as a function of $h/R_h$, where $R_h$ is the hydrodynamic radius of the nanoparticles.
Here we study theoretically the dynamics of a 2D and a 3D isotropic droplet in a nematic liquid crystal under a shear flow. We find a large repertoire of possible nonequilibrium steady states as a function of the shear rate and of the anchoring of th e nematic director field at the droplet surface. We first discuss homeotropic anchoring. For weak anchoring, we recover the typical behaviour of a sheared isotropic droplet in a binary fluid, which rotates, stretches and can be broken by the applied flow. For intermediate anchoring, new possibilities arise due to elastic effects in the nematic fluid. We find that in this regime the 2D droplet can tilt and move in the flow, or tumble incessantly at the centre of the channel. For sufficiently strong anchoring, finally, one or both of the topological defects which form close to the surface of the isotropic droplet in equilibrium detach from it and get dragged deep into the nematic state by the flow. In 3D, instead, the Saturn ring associated with normal anchoring disclination line can be deformed and shifted downstream by the flow, but remains always localized in proximity of the droplet, at least for the parameter range we explored. Tangential anchoring in 2D leads to a different dynamic response, as the boojum defects characteristic of this situation can unbind from the droplet under a weaker shear with respect to the normal anchoring case. Our results should stimulate further experiments with inverted liquid crystal emulsions under shear, as most of the predictions can be testable in principle by monitoring the evolution of liquid crystalline orientation patterns or by tracking the position and shape of the droplet over time.
We explore the effects of composition and temperature on the apparent molar volumes of species of water-methanol mixtures. Isothermal-isobaric molecular dynamics simulations are used with this purpose. Several combinations of models for water and for methanol are explored. Validity of predictions concerned with a puzzling minimum of apparent molar volume of methanol in water-rich solutions is tested against experimental results.
The erythrocyte sedimentation rate is one of the oldest medical diagnostic methods whose physical mechanisms remain debatable up to date. Using both light microscopy and mesoscale cell-level simulations, we show that erythrocytes form a soft-colloid gel. Furthermore, the high volume fraction of erythrocytes, their deformability, and weak attraction lead to unusual properties of this gel. A theoretical model for the gravitational collapse is developed, whose predictions are in agreement with detailed macroscopic measurements of the interface velocity.
We study the compression and extension dynamics of a DNA-like polymer interacting with non-DNA binding and DNA-binding proteins, by means of computer simulations. The geometry we consider is inspired by recent experiments probing the compressional el asticity of the bacterial nucleoid (DNA plus associated proteins), where DNA is confined into a cylindrical container and subjected to the action of a piston - a spherical bead to which an external force is applied. We quantify the effect of steric interactions (excluded volume) on the force-extension curves as the polymer is compressed. We find that non-DNA-binding proteins, even at low densities, exert an osmotic force which can be a lot larger than the entropic force exerted by the compressed DNA. The trends we observe are qualitatively robust with respect to changes in protein size, and are similar for neutral and charged proteins (and DNA). We also quantify the dynamics of DNA expansion following removal of the piston: while the expansion is well fitted by power laws, the apparent exponent depends on protein concentration, and protein-DNA interaction in a significant way. We further highlight an interesting kinetic process which we observe during the expansion of DNA interacting with DNA-binding proteins when the interaction strength is intermediate: the proteins bind while the DNA is packaged by the compression force, but they pop-off one-by-one as the force is removed, leading to a slow unzipping kinetics. Finally, we quantify the importance of supercoiling, which is an important feature of bacterial DNA in vivo.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا