ترغب بنشر مسار تعليمي؟ اضغط هنا

The avalanche mechanism has been used to relate Efimov trimer states to certain enhanced atom loss features observed in ultracold atom gas experiments. These atom loss features are argued to be a signature of resonant atom-molecule scattering that oc curs when an Efimov trimer is degenerate with the atom-molecule scattering threshold. However, observation of these atom loss features has yet to be combined with the direct observation of atom-molecule resonant scattering for any particular atomic species. In addition, recent Monte-Carlo simulations were unable to reproduce a narrow loss feature. We experimentally search for enhanced atom loss features near an established scattering resonance between 40K87Rb Feshbach molecules and 87Rb atoms. Our measurements of both the three-body recombination rate in a gas of 40K and 87Rb atoms and the ratio of the number loss for the two species do not show any broad loss feature and are therefore inconsistent with theoretical predictions that use the avalanche mechanism.
Recent measurements of Efimov resonances in a number of ultracold atom species have revealed an unexpected universality, in which three-body scattering properties are determined by the van der Waals length of the two-body interaction potential. To in vestigate whether this universality extends to heteronuclear mixtures, we measure loss rate coefficients in an ultracold trapped gas of $^{40}$K and $^{87}$Rb atoms. We find an Efimov-like resonance in the rate of inelastic collisions between $^{40}$K$^{87}$Rb Feshbach molecules and $^{87}$Rb atoms. However, we do not observe any Efimov-related resonances in the rates of inelastic collisions between three atoms. These observations are compared to previous measurements by the LENS group of Efimov resonances in a $^{41}$K and $^{87}$Rb mixture as well as to recent predictions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا