ترغب بنشر مسار تعليمي؟ اضغط هنا

The valley dependent optical selection rules in recently discovered monolayer group-VI transition metal dichalcogenides (TMDs) make possible optical control of valley polarization, a crucial step towards valleytronic applications. However, in presenc e of Landaul level(LL) quantization such selection rules are taken over by selection rules between the LLs, which are not necessarily valley contrasting. Using MoS$_{2}$ as an example we show that the spatial inversion-symmetry breaking results in unusual valley dependent inter-LL selection rules, which directly locks polarization to valley. We find a systematic valley splitting for all Landau levels (LLs) in the quantum Hall regime, whose magnitude is linearly proportional to the magnetic field and in comparable with the LL spacing. Consequently, unique plateau structures are found in the optical Hall conductivity, which can be measured by the magneto-optical Faraday rotations.
Majorana fermions, quantum particles with non-Abelian exchange statistics, are not only of fundamental importance, but also building blocks for fault-tolerant quantum computation. Although certain experimental breakthroughs for observing Majorana fer mions have been made recently, their conclusive dection is still challenging due to the lack of proper material properties of the underlined experimental systems. Here we propose a new platform for Majorana fermions based on edge states of certain non-topological two-dimensional semiconductors with strong spin-orbit coupling, such as monolayer group-VI transition metal dichalcogenides (TMD). Using first-principles calculations and tight-binding modeling, we show that zigzag edges of monolayer TMD can host well isolated single edge band with strong spin-orbit coupling energy. Combining with proximity induced s-wave superconductivity and in-plane magnetic fields, the zigzag edge supports robust topological Majorana bound states at the edge ends, although the two-dimensional bulk itself is non-topological. Our findings points to a controllable and integrable platform for searching and manipulating Majorana fermions.
We study the entanglement entropy(EE) of disordered one-dimensional spinless fermions with attractive interactions. With intensive numerical calculation of the EE using the density matrix renormalization group method, we find clear signatures of the transition between the localized and delocalized phase. In the delocalized phase, the fluctuations of the EE becomes minimum and independent of the system size. Meanwhile the EEs logarithmic scaling behavior is found to recover to that of a clean system. We present a general scheme of finite size scaling of the EE at the critical regime of the Anderson transition, from which we extract the critical parameters of the transition with good accuracy, including the critical exponent, critical point and a power-law divergent localization length.
59 - Rui-Lin Chu , Jie Lu , 2012
We study the influences of antidot-induced bound states on transport properties of two- dimensional quantum spin Hall insulators. The bound statesare found able to induce quantum percolation in the originally insulating bulk. At some critical antidot densities, the quantum spin Hall phase can be completely destroyed due to the maximum quantum percolation. For systems with periodic boundaries, the maximum quantum percolationbetween the bound states creates intermediate extended states in the bulk which is originally gapped and insulating. The antidot in- duced bound states plays the same role as the magnetic field inthe quantum Hall effect, both makes electrons go into cyclotron motions. We also draw an analogy between the quantum percolation phenomena in this system and that in the network models of quantum Hall effect.
It has been proposed that disorder may lead to a new type of topological insulator, called topological Anderson insulator (TAI). Here we examine the physical origin of this phenomenon. We calculate the topological invariants and density of states of disordered model in a super-cell of 2-dimensional HgTe/CdTe quantum well. The topologically non-trivial phase is triggered by a band touching as the disorder strength increases. The TAI is protected by a mobility gap, in contrast to the band gap in conventional quantum spin Hall systems. The mobility gap in the TAI consists of a cluster of non-trivial subgaps separated by almost flat and localized bands.
116 - Rui-Lin Chu , Wen-Yu Shan , Jie Lu 2010
We study the topologically non-trivial semi-metals by means of the 6-band Kane model. Existence of surface states is explicitly demonstrated by calculating the LDOS on the material surface. In the strain free condition, surface states are divided int o two parts in the energy spectrum, one part is in the direct gap, the other part including the crossing point of surface state Dirac cone is submerged in the valence band. We also show how uni-axial strain induces an insulating band gap and raises the crossing point from the valence band into the band gap, making the system a true topological insulator. We predict existence of helical edge states and spin Hall effect in the thin film topological semi-metals, which could be tested with future experiment. Disorder is found to significantly enhance the spin Hall effect in the valence band of the thin films.
115 - Rui-Lin Chu , Junren Shi , 2010
We propose a surface-edge state theory for half quantized Hall conductance of surface states in topological insulators. The gap opening of a single Dirac cone for the surface states in a weak magnetic field is demonstrated. We find a new surface stat e resides on the surface edges and carries chiral edge current, resulting in a half-quantized Hall conductance in a four-terminal setup. We also give a physical interpretation of the half quantized conductance by showing that this state is the product of splitting of a boundary bound state of massive Dirac fermions which carries a conductance quantum.
We propose a method that can consecutively modulate the topological orders or the number of helical edge states in ultrathin film semiconductors without a magnetic field. By applying a staggered periodic potential, the system undergoes a transition f rom a topological trivial insulating state into a non-trivial one with helical edge states emerging in the band gap. Further study demonstrates that the number of helical edge state can be modulated by the amplitude and the geometry of the electric potential in a step-wise fashion, which is analogous to tuning the integer quantum Hall conductance by a megntic field. We address the feasibility of experimental measurement of this topological transition.
The solutions for the helical edge states for an effective continuum model for the quantum spin Hall effect in HgTe/CdTe quantum wells are presented. For a sample of a large size, the solution gives the linear dispersion for the edge states. However, in a finite strip geometry, the edge states at two sides will couple with each other, which leads to a finite energy gap in the spectra. The gap decays in an exponential law of the width of sample. The magnetic field dependence of the edge states illustrates the difference of the edge states from those of a conventional quantum Hall strip of two-dimensional electron gas.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا