ترغب بنشر مسار تعليمي؟ اضغط هنا

200 - Yangsen Ye , Sirui Cao , Yulin Wu 2021
High-fidelity two-qubits gates are essential for the realization of large-scale quantum computation and simulation. Tunable coupler design is used to reduce the problem of parasitic coupling and frequency crowding in many-qubit systems and thus thoug ht to be advantageous. Here we design a extensible 5-qubit system in which center transmon qubit can couple to every four near-neighbor qubit via a capacitive tunable coupler and experimentally demonstrate high-fidelity controlled-phase (CZ) gate by manipulating center qubit and one near-neighbor qubit. Speckle purity benchmarking (SPB) and cross entrophy benchmarking (XEB) are used to assess the purity fidelity and the fidelity of the CZ gate. The average purity fidelity of the CZ gate is 99.69$pm$0.04% and the average fidelity of the CZ gate is 99.65$pm$0.04% which means the control error is about 0.04%. Our work will help resovle many chanllenges in the implementation of large scale quantum systems.
To ensure a long-term quantum computational advantage, the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares. Here, we demonstrate a superconducting quantum computing systems textit{Zuchongzhi} 2.1, which has 66 qubits in a two-dimensional array in a tunable coupler architecture. The readout fidelity of textit{Zuchongzhi} 2.1 is considerably improved to an average of 97.74%. The more powerful quantum processor enables us to achieve larger-scale random quantum circuit sampling, with a system scale of up to 60 qubits and 24 cycles. The achieved sampling task is about 6 orders of magnitude more difficult than that of Sycamore [Nature textbf{574}, 505 (2019)] in the classic simulation, and 3 orders of magnitude more difficult than the sampling task on textit{Zuchongzhi} 2.0 [arXiv:2106.14734 (2021)]. The time consumption of classically simulating random circuit sampling experiment using state-of-the-art classical algorithm and supercomputer is extended to tens of thousands of years (about $4.8times 10^4$ years), while textit{Zuchongzhi} 2.1 only takes about 4.2 hours, thereby significantly enhancing the quantum computational advantage.
Parking demand forecasting and behaviour analysis have received increasing attention in recent years because of their critical role in mitigating traffic congestion and understanding travel behaviours. However, previous studies usually only consider temporal dependence but ignore the spatial correlations among parking lots for parking prediction. This is mainly due to the lack of direct physical connections or observable interactions between them. Thus, how to quantify the spatial correlation remains a significant challenge. To bridge the gap, in this study, we propose a spatial-aware parking prediction framework, which includes two steps, i.e. spatial connection graph construction and spatio-temporal forecasting. A case study in Ningbo, China is conducted using parking data of over one million records before and during COVID-19. The results show that the approach is superior on parking occupancy forecasting than baseline methods, especially for the cases with high temporal irregularity such as during COVID-19. Our work has revealed the impact of the pandemic on parking behaviour and also accentuated the importance of modelling spatial dependence in parking behaviour forecasting, which can benefit future studies on epidemiology and human travel behaviours.
Hateful and offensive content detection has been extensively explored in a single modality such as text. However, such toxic information could also be communicated via multimodal content such as online memes. Therefore, detecting multimodal hateful c ontent has recently garnered much attention in academic and industry research communities. This paper aims to contribute to this emerging research topic by proposing DisMultiHate, which is a novel framework that performed the classification of multimodal hateful content. Specifically, DisMultiHate is designed to disentangle target entities in multimodal memes to improve hateful content classification and explainability. We conduct extensive experiments on two publicly available hateful and offensive memes datasets. Our experiment results show that DisMultiHate is able to outperform state-of-the-art unimodal and multimodal baselines in the hateful meme classification task. Empirical case studies were also conducted to demonstrate DisMultiHates ability to disentangle target entities in memes and ultimately showcase DisMultiHates explainability of the multimodal hateful content classification task.
We model Alzheimers disease (AD) progression by combining differential equations (DEs) and reinforcement learning (RL) with domain knowledge. DEs provide relationships between some, but not all, factors relevant to AD. We assume that the missing rela tionships must satisfy general criteria about the working of the brain, for e.g., maximizing cognition while minimizing the cost of supporting cognition. This allows us to extract the missing relationships by using RL to optimize an objective (reward) function that captures the above criteria. We use our model consisting of DEs (as a simulator) and the trained RL agent to predict individualized 10-year AD progression using baseline (year 0) features on synthetic and real data. The model was comparable or better at predicting 10-year cognition trajectories than state-of-the-art learning-based models. Our interpretable model demonstrated, and provided insights into, recovery/compensatory processes that mitigate the effect of AD, even though those processes were not explicitly encoded in the model. Our framework combines DEs with RL for modelling AD progression and has broad applicability for understanding other neurological disorders.
105 - Yulin Wu , Wan-Su Bao , Sirui Cao 2021
Scaling up to a large number of qubits with high-precision control is essential in the demonstrations of quantum computational advantage to exponentially outpace the classical hardware and algorithmic improvements. Here, we develop a two-dimensional programmable superconducting quantum processor, textit{Zuchongzhi}, which is composed of 66 functional qubits in a tunable coupling architecture. To characterize the performance of the whole system, we perform random quantum circuits sampling for benchmarking, up to a system size of 56 qubits and 20 cycles. The computational cost of the classical simulation of this task is estimated to be 2-3 orders of magnitude higher than the previous work on 53-qubit Sycamore processor [Nature textbf{574}, 505 (2019)]. We estimate that the sampling task finished by textit{Zuchongzhi} in about 1.2 hours will take the most powerful supercomputer at least 8 years. Our work establishes an unambiguous quantum computational advantage that is infeasible for classical computation in a reasonable amount of time. The high-precision and programmable quantum computing platform opens a new door to explore novel many-body phenomena and implement complex quantum algorithms.
Respiratory rate (RR) is a clinical sign representing ventilation. An abnormal change in RR is often the first sign of health deterioration as the body attempts to maintain oxygen delivery to its tissues. There has been a growing interest in remotely monitoring of RR in everyday settings which has made photoplethysmography (PPG) monitoring wearable devices an attractive choice. PPG signals are useful sources for RR extraction due to the presence of respiration-induced modulations in them. The existing PPG-based RR estimation methods mainly rely on hand-crafted rules and manual parameters tuning. An end-to-end deep learning approach was recently proposed, however, despite its automatic nature, the performance of this method is not ideal using the real world data. In this paper, we present an end-to-end and accurate pipeline for RR estimation using Cycle Generative Adversarial Networks (CycleGAN) to reconstruct respiratory signals from raw PPG signals. Our results demonstrate a higher RR estimation accuracy of up to 2$times$ (mean absolute error of 1.9$pm$0.3 using five fold cross validation) compared to the state-of-th-art using a identical publicly available dataset. Our results suggest that CycleGAN can be a valuable method for RR estimation from raw PPG signals.
We study how to design edge server placement and server scheduling policies under workload uncertainty for 5G networks. We introduce a new metric called resource pooling factor to handle unexpected workload bursts. Maximizing this metric offers a str ong enhancement on top of robust optimization against workload uncertainty. Using both real traces and synthetic traces, we show that the proposed server placement and server scheduling policies not only demonstrate better robustness against workload uncertainty than existing approaches, but also significantly reduce the cost of service providers. Specifically, in order to achieve close-to-zero workload rejection rate, the proposed server placement policy reduces the number of required edge servers by about 25% compared with the state-of-the-art approach; the proposed server scheduling policy reduces the energy consumption of edge servers by about 13% without causing much impact on the service quality.
187 - Mingrui Cao , Long Zhang , Bin Cao 2021
Due to the distributed characteristics of Federated Learning (FL), the vulnerability of global model and coordination of devices are the main obstacle. As a promising solution of decentralization, scalability and security, leveraging blockchain in FL has attracted much attention in recent years. However, the traditional consensus mechanisms designed for blockchain like Proof of Work (PoW) would cause extreme resource consumption, which reduces the efficiency of FL greatly, especially when the participating devices are wireless and resource-limited. In order to address device asynchrony and anomaly detection in FL while avoiding the extra resource consumption caused by blockchain, this paper introduces a framework for empowering FL using Direct Acyclic Graph (DAG)-based blockchain systematically (DAG-FL). Accordingly, DAG-FL is first introduced from a three-layer architecture in details, and then two algorithms DAG-FL Controlling and DAG-FL Updating are designed running on different nodes to elaborate the operation of DAG-FL consensus mechanism. After that, a Poisson process model is formulated to discuss that how to set deployment parameters to maintain DAG-FL stably in different federated learning tasks. The extensive simulations and experiments show that DAG-FL can achieve better performance in terms of training efficiency and model accuracy compared with the typical existing on-device federated learning systems as the benchmarks.
387 - Yuxin Liang , Rui Cao , Jie Zheng 2021
Pre-trained language models such as BERT have become a more common choice of natural language processing (NLP) tasks. Research in word representation shows that isotropic embeddings can significantly improve performance on downstream tasks. However, we measure and analyze the geometry of pre-trained BERT embedding and find that it is far from isotropic. We find that the word vectors are not centered around the origin, and the average cosine similarity between two random words is much higher than zero, which indicates that the word vectors are distributed in a narrow cone and deteriorate the representation capacity of word embedding. We propose a simple, and yet effective method to fix this problem: remove several dominant directions of BERT embedding with a set of learnable weights. We train the weights on word similarity tasks and show that processed embedding is more isotropic. Our method is evaluated on three standardized tasks: word similarity, word analogy, and semantic textual similarity. In all tasks, the word embedding processed by our method consistently outperforms the original embedding (with average improvement of 13% on word analogy and 16% on semantic textual similarity) and two baseline methods. Our method is also proven to be more robust to changes of hyperparameter.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا