ترغب بنشر مسار تعليمي؟ اضغط هنا

We present results from Speckle inteferometric observations of fifteen visual binaries and one double-line spectroscopic binary, carried out with the HRCam Speckle camera of the SOAR 4.1 m telescope. These systems were observed as a part of an on-goi ng survey to characterize the binary population in the solar vicinity, out to a distance of 250 parsec. We obtained orbital elements and mass sums for our sample of visual binaries. The orbits were computed using a Markov Chain Monte Carlo algorithm that delivers maximum likelihood estimates of the parameters, as well as posterior probability density functions that allow us to evaluate their uncertainty. Their periods cover a range from 5 yr to more than 500 yr; and their spectral types go from early A to mid M - implying total system masses from slightly more than 4 MSun down to 0.2 MSun. They are located at distances between approximately 12 and 200 pc, mostly at low Galactic latitude. For the double-line spectroscopic binary YSC8 we present the first combined astrometric/radial velocity orbit resulting from a self-consistent fit, leading to individual component masses of 0.897 +/- 0.027 MSun and 0.857 +/- 0.026 MSun; and an orbital parallax of 26.61 +/- 0.29 mas, which compares very well with the Gaia DR2 trigonometric parallax (26.55 +/- 0.27 mas). In combination with published photometry and trigonometric parallaxes, we place our objects on an H-R diagram and discuss their evolutionary status. We also present a thorough analysis of the precision and consistency of the photometry available for them.
Partial measurements of relative position are a relatively common event during the observation of visual binary stars. However, these observations are typically discarded when estimating the orbit of a visual pair. In this article we present a novel framework to characterize the orbits from a Bayesian standpoint, including partial observations of relative position as an input for the estimation of orbital parameters. Our aim is to formally incorporate the information contained in those partial measurements in a systematic way into the final inference. In the statistical literature, an imputation is defined as the replacement of a missing quantity with a plausible value. To compute posterior distributions of orbital parameters with partial observations, we propose a technique based on Markov chain Monte Carlo with multiple imputation. We present the methodology and test the algorithm with both synthetic and real observations, studying the effect of incorporating partial measurements in the parameter estimation. Our results suggest that the inclusion of partial measurements into the characterization of visual binaries may lead to a reduction in the uncertainty associated to each orbital element, in terms of a decrease in dispersion measures (such as the interquartile range) of the posterior distribution of relevant orbital parameters. The extent to which the uncertainty decreases after the incorporation of new data (either complete or partial) depends on how informative those newly-incorporated measurements are. Quantifying the information contained in each measurement remains an open issue.
We present orbital elements and mass sums for eighteen visual binary stars of spectral types B to K (five of which are new orbits) with periods ranging from 20 to more than 500 yr. For two double-line spectroscopic binaries with no previous orbits, t he individual component masses, using combined astrometric and radial velocity data, have a formal uncertainty of ~0.1 MSun. Adopting published photometry, and trigonometric parallaxes, plus our own measurements, we place these objects on an H-R diagram, and discuss their evolutionary status. These objects are part of a survey to characterize the binary population of stars in the Southern Hemisphere, using the SOAR 4m telescope+HRCAM at CTIO. Orbital elements are computed using a newly developed Markov Chain Monte Carlo algorithm that delivers maximum likelihood estimates of the parameters, as well as posterior probability density functions that allow us to evaluate the uncertainty of our derived parameters in a robust way. For spectroscopic binaries, using our approach, it is possible to derive a self-consistent parallax for the system from the combined astrometric plus radial velocity data (orbital parallax), which compares well with the trigonometric parallaxes. We also present a mathematical formalism that allows a dimensionality reduction of the feature space from seven to three search parameters (or from ten to seven dimensions - including parallax - in the case of spectroscopic binaries with astrometric data), which makes it possible to explore a smaller number of parameters in each case, improving the computational efficiency of our Markov Chain Monte Carlo code.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا