ﻻ يوجد ملخص باللغة العربية
We present orbital elements and mass sums for eighteen visual binary stars of spectral types B to K (five of which are new orbits) with periods ranging from 20 to more than 500 yr. For two double-line spectroscopic binaries with no previous orbits, the individual component masses, using combined astrometric and radial velocity data, have a formal uncertainty of ~0.1 MSun. Adopting published photometry, and trigonometric parallaxes, plus our own measurements, we place these objects on an H-R diagram, and discuss their evolutionary status. These objects are part of a survey to characterize the binary population of stars in the Southern Hemisphere, using the SOAR 4m telescope+HRCAM at CTIO. Orbital elements are computed using a newly developed Markov Chain Monte Carlo algorithm that delivers maximum likelihood estimates of the parameters, as well as posterior probability density functions that allow us to evaluate the uncertainty of our derived parameters in a robust way. For spectroscopic binaries, using our approach, it is possible to derive a self-consistent parallax for the system from the combined astrometric plus radial velocity data (orbital parallax), which compares well with the trigonometric parallaxes. We also present a mathematical formalism that allows a dimensionality reduction of the feature space from seven to three search parameters (or from ten to seven dimensions - including parallax - in the case of spectroscopic binaries with astrometric data), which makes it possible to explore a smaller number of parameters in each case, improving the computational efficiency of our Markov Chain Monte Carlo code.
We present results from Speckle inteferometric observations of fifteen visual binaries and one double-line spectroscopic binary, carried out with the HRCam Speckle camera of the SOAR 4.1 m telescope. These systems were observed as a part of an on-goi
We present the Solar Bayesian Analysis Toolkit (SoBAT) which is a new easy to use tool for Bayesian analysis of observational data, including parameter inference and model comparison. SoBAT is aimed (but not limited) to be used for the analysis of so
The Laser Interferometer Space Antenna (LISA) defines new demands on data analysis efforts in its all-sky gravitational wave survey, recording simultaneously thousands of galactic compact object binary foreground sources and tens to hundreds of backg
We present a Markov-chain Monte-Carlo (MCMC) technique to study the source parameters of gravitational-wave signals from the inspirals of stellar-mass compact binaries detected with ground-based gravitational-wave detectors such as LIGO and Virgo, fo
We present the visual orbit of the double-lined spectroscopic binary HD 224355 from interferometric observations with the CHARA Array, as well as an updated spectroscopic analysis using echelle spectra from the Apache Point Observatory 3.5m telescope