ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the results of a new search for galaxies at redshift z ~ 9 in the first two Hubble Frontier Fields with completed HST WFC3/IR and ACS imaging. To ensure robust photometric redshift solutions, and to minimize incompleteness, we confine our search to objects with H_{160} < 28.6 (AB mag), consider only image regions with an rms noise sigma_{160} > 30 mag (within a 0.5-arcsec diameter aperture), and insist on detections in both H_{160} and J_{140}. The result is a survey covering an effective area (after accounting for magnification) of 10.9 sq. arcmin, which yields 12 galaxies at 8.4 < z < 9.5. Within the Abell-2744 cluster and parallel fields we confirm the three brightest objects reported by Ishigaki et al. (2014), but recover only one of the four z > 8.4 sources reported by Zheng et al. (2014). In the MACSJ0416.1-240 cluster field we report five objects, and explain why each of these eluded detection or classification as z ~ 9 galaxies in the published searches of the shallower CLASH data. Finally, we uncover four z ~ 9 galaxies from the previously unsearched MACSJ0416.1-240 parallel field. Based on the published magnification maps we find that only one of these 12 galaxies is likely boosted by more than a factor of two by gravitational lensing. Consequently we are able to perform a fairly straightforward reanalysis of the normalization of the z ~ 9 UV galaxy luminosity function as explored previously in the HUDF12 programme. We conclude that the new data strengthen the evidence for a continued smooth decline in UV luminosity density (and hence star-formation rate density) from z ~ 8 to z ~ 9, contrary to recent reports of a marked drop-off at these redshifts. This provides further support for the scenario in which early galaxy evolution is sufficiently extended to explain cosmic reionization.
We present the 2012 Hubble Ultra Deep Field campaign (UDF12), a large 128-orbit Cycle 19 HST program aimed at extending previous WFC3/IR observations of the UDF by quadrupling the exposure time in the F105W filter, imaging in an additional F140W filt er, and extending the F160W exposure time by 50%. The principal scientific goal of this project is to determine whether galaxies reionized the universe; our observations are designed to provide a robust determination of the star formation density at $z$$,gtrsim,$8, improve measurements of the ultraviolet continuum slope at $z$$,sim,7,-,$8, facilitate the construction of new samples of $z$$,sim,9,-,$10 candidates, and enable the detection of sources up to $z$$,sim,$12. For this project we committed to combining these and other WFC3/IR imaging observations of the UDF area into a single homogeneous dataset, to provide the deepest near-infrared observations of the sky currently achievable. In this paper we present the observational overview of the project, motivated by its scientific goals, and describe the procedures used in reducing the data as well as the final products that are produced. We have used the most up up-to-date methods for calibrating and combining the images, in particular paying attention to correcting several instrumental effects. We release the full combined mosaics, comprising a single, unified set of mosaics of the UDF, providing the deepest near-infrared blank-field view of the universe obtained to date, reaching magnitudes as deep as AB$,sim,$30 in the near-infrared, and yielding a legacy dataset on this field of lasting scientific value to the community.
We present the results of the deepest search to date for star-forming galaxies beyond a redshift z~8.5 utilizing a new sequence of near-infrared Wide Field Camera 3 images of the Hubble Ultra Deep Field. This `UDF12 campaign completed in September 20 12 doubles the earlier exposures with WFC3/IR in this field and quadruples the exposure in the key F105W filter used to locate such distant galaxies. Combined with additional imaging in the F140W filter, the fidelity of high redshift candidates is greatly improved. Using spectral energy distribution fitting techniques on objects selected from a deep multi-band near-infrared stack we find 7 promising z>8.5 candidates. As none of the previously claimed UDF candidates with 8.5<z<10 is confirmed by our deeper multi-band imaging, our campaign has transformed the measured abundance of galaxies in this redshift range. Although we recover the candidate UDFj-39546284 (previously proposed at z=10.3), it is undetected in the newly added F140W image, implying it lies at z=11.9 or is an intense emission line galaxy at z~2.4. Although no physically-plausible model can explain the required line intensity given the lack of Lyman alpha or broad-band UV signal, without an infrared spectrum we cannot rule out an exotic interloper. Regardless, our robust z ~ 8.5 - 10 sample demonstrates a luminosity density that continues the smooth decline observed over 6 < z < 8. Such continuity has important implications for models of cosmic reionization and future searches for z>10 galaxies with JWST.
We present the results of a search for the most luminous star-forming galaxies at redshifts z~6 based on CFHT Legacy Survey data. We identify a sample of 40 Lyman break galaxies brighter than magnitude z=25.3 across an area of almost 4 square degrees . Sensitive spectroscopic observations of seven galaxies provide redshifts for four, of which only two have moderate to strong Lyman alpha emission lines. All four have clear continuum breaks in their spectra. Approximately half of the Lyman break galaxies are spatially resolved in 0.7 arcsec seeing images, indicating larger sizes than lower luminosity galaxies discovered with the Hubble Space Telescope, possibly due to on-going mergers. The stacked optical and infrared photometry is consistent with a galaxy model with stellar mass ~ 10^{10} solar masses. There is strong evidence for substantial dust reddening with a best-fit A_V=0.7 and A_V>0.48 at 2 sigma confidence, in contrast to the typical dust-free galaxies of lower luminosity at this epoch. The spatial extent and spectral energy distribution suggest that the most luminous z~6 galaxies are undergoing merger-induced starbursts. The luminosity function of z=5.9 star-forming galaxies is derived. This agrees well with previous work and shows strong evidence for an exponential decline at the bright end, indicating that the feedback processes which govern the shape of the bright end are occurring effectively at this epoch.
We have analysed a sample of 25 extremely red H-[4.5]>4 galaxies, selected using 4.5 micron data from the Spitzer SEDS survey and deep H-band data from the Hubble Space Telescope (HST) CANDELS survey, over ~180 square arcmin of the UKIDSS Ultra Deep Survey (UDS) field. Our aim is to investigate the nature of this rare population of mid-infrared (mid-IR) sources that display such extreme near-to-mid-IR colours. Using up to 17-band photometry (U through 8.0 microns), we have studied in detail their spectral energy distributions, including possible degeneracies in the photometric redshift/internal extinction (zphot-Av) plane. Our sample appears to include sources of very different nature. Between 45% and 75% of them are dust-obscured, massive galaxies at 3<zphot<5. All of the 24 micron-detected sources in our sample are in this category. Two of these have S(24 micron)>300 microJy, which at 3<zphot<5 suggests that they probably host a dust-obscured active galactic nucleus (AGN). Our sample also contains four highly obscured (Av>5) sources at zphot<1. Finally, we analyse in detail two zphot~6 galaxy candidates, and discuss their plausibility and implications. Overall, our red galaxy sample contains the tip of the iceberg of a larger population of z>3 galaxies to be discovered with the future James Webb Space Telescope.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا