ترغب بنشر مسار تعليمي؟ اضغط هنا

The Abundance of Star-Forming Galaxies in the Redshift Range 8.5 to 12: New Results from the 2012 Hubble Ultra Deep Field Campaign

143   0   0.0 ( 0 )
 نشر من قبل Richard Ellis
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of the deepest search to date for star-forming galaxies beyond a redshift z~8.5 utilizing a new sequence of near-infrared Wide Field Camera 3 images of the Hubble Ultra Deep Field. This `UDF12 campaign completed in September 2012 doubles the earlier exposures with WFC3/IR in this field and quadruples the exposure in the key F105W filter used to locate such distant galaxies. Combined with additional imaging in the F140W filter, the fidelity of high redshift candidates is greatly improved. Using spectral energy distribution fitting techniques on objects selected from a deep multi-band near-infrared stack we find 7 promising z>8.5 candidates. As none of the previously claimed UDF candidates with 8.5<z<10 is confirmed by our deeper multi-band imaging, our campaign has transformed the measured abundance of galaxies in this redshift range. Although we recover the candidate UDFj-39546284 (previously proposed at z=10.3), it is undetected in the newly added F140W image, implying it lies at z=11.9 or is an intense emission line galaxy at z~2.4. Although no physically-plausible model can explain the required line intensity given the lack of Lyman alpha or broad-band UV signal, without an infrared spectrum we cannot rule out an exotic interloper. Regardless, our robust z ~ 8.5 - 10 sample demonstrates a luminosity density that continues the smooth decline observed over 6 < z < 8. Such continuity has important implications for models of cosmic reionization and future searches for z>10 galaxies with JWST.



قيم البحث

اقرأ أيضاً

Understanding cosmic reionization requires the identification and characterization of early sources of hydrogen-ionizing photons. The 2012 Hubble Ultra Deep Field (UDF12) campaign has acquired the deepest infrared images with the Wide Field Camera 3 aboard Hubble Space Telescope and, for the first time, systematically explored the galaxy population deep into the era when cosmic microwave background (CMB) data indicates reionization was underway. The UDF12 campaign thus provides the best constraints to date on the abundance, luminosity distribution, and spectral properties of early star-forming galaxies. We synthesize the new UDF12 results with the most recent constraints from CMB observations to infer redshift-dependent ultraviolet (UV) luminosity densities, reionization histories, and electron scattering optical depth evolution consistent with the available data. Under reasonable assumptions about the escape fraction of hydrogen ionizing photons and the intergalactic medium clumping factor, we find that to fully reionize the universe by redshift z~6 the population of star-forming galaxies at redshifts z~7-9 likely must extend in luminosity below the UDF12 limits to absolute UV magnitudes of M_UVsim -13 or fainter. Moreover, low levels of star formation extending to redshifts z~15-25, as suggested by the normal UV colors of zsimeq7-8 galaxies and the smooth decline in abundance with redshift observed by UDF12 to zsimeq10, are additionally likely required to reproduce the optical depth to electron scattering inferred from CMB observations.
We analyze the redshift- and luminosity-dependent sizes of dropout galaxy candidates in the redshift range z~7-12 using deep images from the UDF12 campaign, data which offers two distinct advantages over that used in earlier work. Firstly, we utilize the increased S/N ratio offered by the UDF12 imaging to provide improved size measurements for known galaxies at z=6.5-8 in the HUDF. Specifically, we stack the new deep F140W image with the existing F125W data in order to provide improved measurements of the half-light radii of z-dropouts. Similarly we stack this image with the new deep UDF12 F160W image to obtain new size measurements for a sample of Y-dropouts. Secondly, because the UDF12 data have allowed the construction of the first robust galaxy sample in the HUDF at z>8, we have been able to extend the measurement of average galaxy size out to significantly higher redshifts. Restricting our size measurements to sources which are now detected at >15sigma, we confirm earlier indications that the average half-light radii of z~7-12 galaxies are extremely small, 0.3-0.4 kpc, comparable to the sizes of giant molecular associations in local star-forming galaxies. We also confirm that there is a clear trend of decreasing half-light radius with increasing redshift, and provide the first evidence that this trend continues beyond z~8. Modeling the evolution of the average half-light radius as a power-law (1+z)^s, we obtain a best-fit index of s=-1.28+/-0.13 over the redshift range z~4-12, mid-way between the physically expected evolution for baryons embedded in dark halos of constant mass (s=-1) and constant velocity (s=-1.5). A clear size-luminosity relation, such as that found at lower redshift, is also evident in both our z- and Y-dropout sample. This relation can be interpreted in terms of a constant surface density of star formation over a range in luminosity of 0.05-1.0L*_z=3.(abridged)
366 - Andrew Bunker 2009
We have searched for star-forming galaxies at z~7 by applying the Lyman-break technique to newly-released 1.1micron Y-band images from WFC3 on HST. By comparing these images of the Hubble Ultra Deep Field with the ACS z-band (0.85micron), we identify objects with red colours, (z-Y)_AB>1.3), consistent with the Ly-alpha forest absorption at z~6.7-8.8. We identify 12 of these z-drops down to a limiting magnitude Y_AB<28.5 (equivalent to a star formation rate of 1.3M_sun/yr at z=7.1), which are undetected in the other ACS filters. We use the WFC3 J-band image to eliminate contaminant low mass Galactic stars, which typically have redder colours than z~7 galaxies. One of our z-drops is a probably a T-dwarf star. The z~7 z-drops have much bluer spectral slopes than Lyman-break galaxies at lower redshift. Our brightest z-drop is not present in the NICMOS J-band image of the same field taken 5 years before, and is a possible transient object. From the 10 remaining z~7 candidates we determine a lower limit on the star formation rate density of 0.0017M_sun/yr/Mpc^3 for a Salpeter initial mass function, which rises to 0.0025-0.0034M_sun/yr/Mpc^3 after correction for luminosity bias. The star formation rate density is a factor of ~10 less than that at z=3-4, and is about half the value at z~6. While based on a single deep field, our results suggest that this star formation rate density would produce insufficient Lyman continuum photons to reionize the Universe unless the escape fraction of these photons is extremely high (f_esc>0.5), and the clumping factor of the Universe is low. Even then, we need to invoke a large contribution from galaxies below our detection limit. The apparent shortfall in ionizing photons might be alleviated if stellar populations at high redshift are low metallicity or have a top-heavy IMF.
We present a catalog of high redshift star-forming galaxies selected to lie within the redshift range z ~ 7-8 using the Ultra Deep Field 2012 (UDF12), the deepest near-infrared (near-IR) exposures yet taken with the Hubble Space Telescope. As a resul t of the increased near-infrared exposure time compared to previous HST imaging in this field, we probe 0.65 (0.25) mag fainter in absolute UV magnitude, at z ~ 7 (8), which increases confidence in a measurement of the faint end slope of the galaxy luminosity function. Through a 0.7 mag deeper limit in the key F105W filter that encompasses or lies just longward of the Lyman break, we also achieve a much-refined color-color selection that balances high redshift completeness and a low expected contamination fraction. We improve the number of drop-out selected UDF sources to 47 at z ~ 7 and 27 at z ~ 8. Incorporating brighter archival and ground-based samples, we measure the z ~ 7 UV luminosity function to an absolute magnitude limit of M_UV = -17 and find a faint end Schechter slope of alpha = -1.87+/- 0.18. Using a similar color-color selection at z ~ 8 that takes account of our newly-added imaging in the F140W filter, and incorporating archival data from the HIPPIES and BoRG campaigns, we provide a robust estimate of the faint end slope at z ~ 8, alpha = -1.94 +/- 0.23. We briefly discuss our results in the context of earlier work and that derived using the same UDF12 data but with an independent photometric redshift technique (McLure et al 2012).
We present the 2012 Hubble Ultra Deep Field campaign (UDF12), a large 128-orbit Cycle 19 HST program aimed at extending previous WFC3/IR observations of the UDF by quadrupling the exposure time in the F105W filter, imaging in an additional F140W filt er, and extending the F160W exposure time by 50%. The principal scientific goal of this project is to determine whether galaxies reionized the universe; our observations are designed to provide a robust determination of the star formation density at $z$$,gtrsim,$8, improve measurements of the ultraviolet continuum slope at $z$$,sim,7,-,$8, facilitate the construction of new samples of $z$$,sim,9,-,$10 candidates, and enable the detection of sources up to $z$$,sim,$12. For this project we committed to combining these and other WFC3/IR imaging observations of the UDF area into a single homogeneous dataset, to provide the deepest near-infrared observations of the sky currently achievable. In this paper we present the observational overview of the project, motivated by its scientific goals, and describe the procedures used in reducing the data as well as the final products that are produced. We have used the most up up-to-date methods for calibrating and combining the images, in particular paying attention to correcting several instrumental effects. We release the full combined mosaics, comprising a single, unified set of mosaics of the UDF, providing the deepest near-infrared blank-field view of the universe obtained to date, reaching magnitudes as deep as AB$,sim,$30 in the near-infrared, and yielding a legacy dataset on this field of lasting scientific value to the community.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا