ترغب بنشر مسار تعليمي؟ اضغط هنا

The DESI survey will observe more than 8 million candidate luminous red galaxies (LRGs) in the redshift range $0.3<z<1.0$. Here we present a preliminary version of the DESI LRG target selection developed using Legacy Surveys Data Release 8 $g$, $r$, $z$ and $W1$ photometry. This selection yields a sample with a uniform surface density of ${sim},600$ deg$^{-2}$and very low predicted stellar contamination and redshift failure rates. During DESI Survey Validation, updat
We present measurements of the redshift-dependent clustering of a DESI-like luminous red galaxy (LRG) sample selected from the Legacy Survey imaging dataset, and use the halo occupation distribution (HOD) framework to fit the clustering signal. The p hotometric LRG sample in this study contains 2.7 million objects over the redshift range of $0.4 < z < 0.9$ over 5655 deg$^2$. We have developed new photometric redshift (photo-$z$) estimates using the Legacy Survey DECam and WISE photometry, with $sigma_{mathrm{NMAD}} = 0.02$ precision for LRGs. We compute the projected correlation function using new methods that maximize signal-to-noise ratio while incorporating redshift uncertainties. We present a novel algorithm for dividing irregular survey geometries into equal-area patches for jackknife resampling. For a five-parameter HOD model fit using the MultiDark halo catalog, we find that there is little evolution in HOD parameters except at the highest redshifts. The inferred large-scale structure bias is largely consistent with constant clustering amplitude over time. In an appendix, we explore limitations of Markov chain Monte Carlo fitting using stochastic likelihood estimates resulting from applying HOD methods to N-body catalogs, and present a new technique for finding best-fit parameters in this situation. Accompanying this paper we have released the Photometric Redshifts for the Legacy Surveys (PRLS) catalog of photo-$z$s obtained by applying the methods used in this work to the full Legacy Survey Data Release 8 dataset. This catalog provides accurate photometric redshifts for objects with $z < 21$ over more than 16,000 deg$^2$ of sky.
We present catalogs of calibrated photometry and spectroscopic redshifts in the Extended Groth Strip, intended for studies of photometric redshifts (photo-zs). The data includes ugriz photometry from CFHTLS and Y-band photometry from the Subaru Supri me camera, as well as spectroscopic redshifts from the DEEP2, DEEP3 and 3D-HST surveys. These catalogs incorporate corrections to produce effectively matched-aperture photometry across all bands, based upon object size information available in the catalog and Moffat profile point spread function fits. We test this catalog with a simple machine learning-based photometric redshift algorithm based upon Random Forest regression, and find that the corrected aperture photometry leads to significant improvement in photo-z accuracy compared to the original SExtractor catalogs from CFHTLS and Subaru. The deep ugrizY photometry and spectroscopic redshifts are well-suited for empirical tests of photometric redshift algorithms for LSST. The resulting catalogs are publicly available. We include a basic summary of the strategy of the DEEP3 Galaxy Redshift Survey to accompany the recent public release of DEEP3 data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا