ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate the transfer of $^{23}$Na$^{40}$K molecules from a closed-channel dominated Feshbach-molecule state to the absolute ground state. The Feshbach molecules are initially created from a gas of sodium and potassium atoms via adiabatic rampi ng over a Feshbach resonance at 78.3$,$G. The molecules are then transferred to the absolute ground state using stimulated Raman adiabatic passage with an intermediate state in the spin-orbit-coupled complex $|c^3 Sigma^+, v=35, J=1 rangle sim |B^1Pi, v=12, J=1rangle$. Our measurements show that the pump transition dipole moment linearly increases with the closed-channel fraction. Thus, the pump-beam intensity can be two orders of magnitude lower than is necessary with open-channel dominated Feshbach molecules. We also demonstrate that the phase noise of the Raman lasers can be reduced by filter cavities, significantly improving the transfer efficiency.
Understanding collisions between ultracold molecules is crucial for making stable molecular quantum gases and harnessing their rich internal degrees of freedom for quantum engineering. Transient complexes can strongly influence collisional physics, b ut in the ultracold regime, key aspects of their behavior have remained unknown. To explain experimentally observed loss of ground-state molecules from optical dipole traps, it was recently proposed that molecular complexes can be lost due to photo-excitation. By trapping molecules in a repulsive box potential using laser light near a narrow molecular transition, we are able to test this hypothesis with light intensities three orders of magnitude lower than what is typical in red-detuned dipole traps. This allows us to investigate light-induced collisional loss in a gas of nonreactive fermionic $^{23}$Na$^{40}$K molecules. Even for the lowest intensities available in our experiment, our results are consistent with universal loss, meaning unit loss probability inside the short-range interaction potential. Our findings disagree by at least two orders of magnitude with latest theoretical predictions, showing that crucial aspects of molecular collisions are not yet understood, and provide a benchmark for the development of new theories.
We demonstrate a versatile, rotational-state dependent trapping scheme for the ground and first excited rotational states of $^{23}$Na$^{40}$K molecules. Close to the rotational manifold of a narrow electronic transition, we determine tune-out freque ncies where the polarizability of one state vanishes while the other remains finite, and a magic frequency where both states experience equal polarizability. The proximity of these frequencies of only 10 GHz allows for dynamic switching between different trap configurations in a single experiment, while still maintaining sufficiently low scattering rates.
Electric machines with very power-to-weight ratios are inevitable for hybrid electric aircraft applications. One potential technology that is very promising to achieve the required power-to-weight ratio for short-range aircraft, are superconductors u sed for high current densities in the stator or high magnetic fields in the rotor. In this paper, we present an indepth analysis of the potential for fully and partially superconducting electric machines that is based on an analytical approach taking into account all relevant physical domains such as electromagnetics, superconducting properties, thermal behavior as well as structural mechanics. For the requirements of the motors in the NASA N3-X concept aircraft, we find that fully superconducting machines could achieve 3.5 times higher power-to-weight ratio than partially superconducting machines. Furthermore, our model can be used to calculate the relevant KPIs such as mass, efficiency and cryogenic cooling requirements for any other machine design.
The use of high-temperature superconductors in electric machines offers potentially large gains in performance compared to conventional conductors, but also comes with unique challenges. Here, the electromagnetic properties of superconducting electri c machines with bulk HTS trapped-field magnets in the rotor and conventional copper coils in the stator are investigated. To this end, an analytical model of the electromagnetic field in radial air-gap synchronous electric machines is developed and validated, taking into account the specific difficulties that occur in the treatment of machines with bulk HTS. Using this model, the influence of pole pair number, stator winding thickness, rotor surface coverage, and air gap width on the machines Esson coefficient is calculated. In contrast to numerical simulations, the method presented here can provide results within minutes, making it particularly useful for work in early development and systems engineering, where large parameter spaces must be investigated quickly.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا