ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient conversion of closed-channel dominated Feshbach molecules of $^{23}$Na$^{40}$K to their absolute ground state

177   0   0.0 ( 0 )
 نشر من قبل Roman Bause
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the transfer of $^{23}$Na$^{40}$K molecules from a closed-channel dominated Feshbach-molecule state to the absolute ground state. The Feshbach molecules are initially created from a gas of sodium and potassium atoms via adiabatic ramping over a Feshbach resonance at 78.3$,$G. The molecules are then transferred to the absolute ground state using stimulated Raman adiabatic passage with an intermediate state in the spin-orbit-coupled complex $|c^3 Sigma^+, v=35, J=1 rangle sim |B^1Pi, v=12, J=1rangle$. Our measurements show that the pump transition dipole moment linearly increases with the closed-channel fraction. Thus, the pump-beam intensity can be two orders of magnitude lower than is necessary with open-channel dominated Feshbach molecules. We also demonstrate that the phase noise of the Raman lasers can be reduced by filter cavities, significantly improving the transfer efficiency.



قيم البحث

اقرأ أيضاً

We demonstrate a versatile, rotational-state dependent trapping scheme for the ground and first excited rotational states of $^{23}$Na$^{40}$K molecules. Close to the rotational manifold of a narrow electronic transition, we determine tune-out freque ncies where the polarizability of one state vanishes while the other remains finite, and a magic frequency where both states experience equal polarizability. The proximity of these frequencies of only 10 GHz allows for dynamic switching between different trap configurations in a single experiment, while still maintaining sufficiently low scattering rates.
We demonstrate coherent microwave control of rotational and hyperfine states of trapped, ultracold, and chemically stable $^{23}$Na$^{40}$K molecules. Starting with all molecules in the absolute rovibrational and hyperfine ground state, we study rota tional transitions in combined magnetic and electric fields and explain the rich hyperfine structure. Following the transfer of the entire molecular ensemble into a single hyperfine level of the first rotationally excited state, $J{=}1$, we observe collisional lifetimes of more than $3, rm s$, comparable to those in the rovibrational ground state, $J{=}0$. Long-lived ensembles and full quantum state control are prerequisites for the use of ultracold molecules in quantum simulation, precision measurements and quantum information processing.
Coherence, the stability of the relative phase between quantum states, lies at the heart of quantum mechanics. Applications such as precision measurement, interferometry, and quantum computation are enabled by physical systems that have quantum state s with robust coherence. With the creation of molecular ensembles at sub-$mu$K temperatures, diatomic molecules have become a novel system under full quantum control. Here, we report on the observation of stable coherence between a pair of nuclear spin states of ultracold fermionic NaK molecules in the singlet rovibrational ground state. Employing microwave fields, we perform Ramsey spectroscopy and observe coherence times on the scale of one second. This work opens the door for the exploration of single molecules as a versatile quantum memory. Switchable long-range interactions between dipolar molecules can further enable two-qubit gates, allowing quantum storage and processing in the same physical system. Within the observed coherence time, $10^4$ one- and two-qubit gate operations will be feasible.
We present measurements of more than 80 magnetic Feshbach resonances in collisions of ultracold $^{23}$Na$^{40}$K with $^{40}$K. We assign quantum numbers to a group of low-field resonances and show that they are due to long-range states of the triat omic complex in which the quantum numbers of the separated atom and molecule are approximately preserved. The resonant states are not members of chaotic bath of short-range states. Similar resonances are expected to be a common feature of alkali-metal diatom + atom systems.
201 - Zhichao Guo , Fan Jia , Bin Zhu 2021
We measure the binding energies of weakly bound Feshbach molecules formed between Na and Rb atoms in their lowest hyperfine Zeeman levels. We form molecules at the Feshbach resonance near 347.64 G and dissociate them by magnetic field modulation. We use the binding energies to refine the singlet and triplet potential energy curves, using coupled-channel bound-state calculations. We then use coupled-channel scattering calculations on the resulting potentials to produce a high-precision mapping between magnetic field and scattering length. We also observe 10 additional $s$-wave Feshbach resonances for Na and Rb in different combinations of Zeeman sublevels of the $F = 1$ hyperfine states. Some of the resonances show 2-body inelastic decay due to spin exchange. We compare the resonance properties with coupled-channel scattering calculations that full take account of inelastic properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا