ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a model for high-energy emission sources generated by a standing magnetohydrodynamical (MHD) shock in a black hole magnetosphere. The black hole magnetosphere would be constructed around a black hole with an accretion disk, where a global magnetic field could be originated by currents in the accretion disk and its corona. Such a black hole magnetosphere may be considered as a model for the central engine of active galactic nuclei, some compact X-ray sources and gamma-ray bursts. The energy sources of the emission from the magnetosphere are the gravitational and electromagnetic energies of magnetized accreting matters and the rotational energy of a rotating black hole. When the MHD shock generates in MHD accretion flows onto the black hole, the plasmas kinetic energy and holes rotational energy can convert to radiative energy. In this letter, we demonstrate the huge energy output at the shock front by showing negative energy postshock accreting MHD flows for a rapidly rotating black hole. This means that the extracted energy from the black hole can convert to the radiative energy at the MHD shock front. When axisymmetric shock front is formed, we expect a ring-shaped region with very hot plasma near the black hole; the look would be like an aurora. The high energy radiation generated from there would carry to us the information for the curved spacetime due to the strong gravity.
Aims. In order to understand the anisotropic properties of local radiation field in the curved spacetime around a rotating black hole, we investigate the appearance of a black hole seen by an observer located near the black hole. When the black hole is in front of a source of illumination the black hole cast shadow in the illumination. Accordingly, the appearance of the black hole is called the black hole shadow. Methods. We first analytically describe the shape of the shadow in terms of constants of motion for a photon seen by the observer in the locally non-rotating reference frame (LNRF). Then, we newly derive the useful equation for the solid angle of the shadow. In a third step, we can easily plot the apparent image of the black hole shadow. Finally, we also calculate the ratio of the photon trapped by the hole and the escape photon to the distant region for photons emitted near the black hole. Results. From the shape and the size of the black hole shadow, we can understand the signatures of the curved spacetime; i.e., the mass and spin of the black hole. Our equations for the solid angle of the shadow has technical advantages in calculating the photon trapping ratio. That is, this equation is computationally very easy, and gives extremely precise results. This is because this equation is described by the one-parameter integration with given values of the spin and location for the black hole considered. After this, the solid angle can be obtained without numerical calculations of the null geodesics for photons.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا