ﻻ يوجد ملخص باللغة العربية
Aims. In order to understand the anisotropic properties of local radiation field in the curved spacetime around a rotating black hole, we investigate the appearance of a black hole seen by an observer located near the black hole. When the black hole is in front of a source of illumination the black hole cast shadow in the illumination. Accordingly, the appearance of the black hole is called the black hole shadow. Methods. We first analytically describe the shape of the shadow in terms of constants of motion for a photon seen by the observer in the locally non-rotating reference frame (LNRF). Then, we newly derive the useful equation for the solid angle of the shadow. In a third step, we can easily plot the apparent image of the black hole shadow. Finally, we also calculate the ratio of the photon trapped by the hole and the escape photon to the distant region for photons emitted near the black hole. Results. From the shape and the size of the black hole shadow, we can understand the signatures of the curved spacetime; i.e., the mass and spin of the black hole. Our equations for the solid angle of the shadow has technical advantages in calculating the photon trapping ratio. That is, this equation is computationally very easy, and gives extremely precise results. This is because this equation is described by the one-parameter integration with given values of the spin and location for the black hole considered. After this, the solid angle can be obtained without numerical calculations of the null geodesics for photons.
Very-long baseline interferometric observations have resolved structure on scales of only a few Schwarzschild radii around the supermassive black holes at the centers of our Galaxy and M87. In the near future, such observations are expected to image
In the context of the interaction between the electromagnetic field and a dielectric dispersive lossless medium, we present a non-linear version of the relativistically covariant Hopfield model, which is suitable for the description of a dielectric K
A rotating black hole causes the spin-axis of a nearby pulsar to precess due to geodetic and gravitomagnetic frame-dragging effects. The aim of our theoretical work here is to explore how this spin-precession can modify the rate at which pulses are r
The search for extraterrestrial intelligence (SETI) has been conducted for nearly 60 years. A Dyson Sphere, a spherical structure that surrounds a star and transports its radiative energy outward as an energy source for an advanced civilisation, is o
In this paper we first investigate the equatorial circular orbit structure of Kerr black holes with scalar hair (KBHsSH) and highlight their most prominent features which are quite distinct from the exterior region of ordinary bald Kerr black holes,