ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider the decomposition of arbitrary isometries into a sequence of single-qubit and Controlled-NOT (C-NOT) gates. In many experimental architectures, the C-NOT gate is relatively expensive and hence we aim to keep the number of these as low as possible. We derive a theoretical lower bound on the number of C-NOT gates required to decompose an arbitrary isometry from m to n qubits, and give three explicit gate decompositions that achieve this bound up to a factor of about two in the leading order. We also perform some bespoke optimizations for certain cases where m and n are small. In addition, we show how to apply our result for isometries to give decomposition schemes for arbitrary quantum operations and POVMs via Stinesprings theorem. These results will have an impact on experimental efforts to build a quantum computer, enabling them to go further with the same resources.
The classical asymptotic equipartition property is the statement that, in the limit of a large number of identical repetitions of a random experiment, the output sequence is virtually certain to come from the typical set, each member of which is almo st equally likely. In this paper, we prove a fully quantum generalization of this property, where both the output of the experiment and side information are quantum. We give an explicit bound on the convergence, which is independent of the dimensionality of the side information. This naturally leads to a family of Renyi-like quantum conditional entropies, for which the von Neumann entropy emerges as a special case.
It was shown by Bell that no local hidden variable model is compatible with quantum mechanics. If, instead, one permits the hidden variables to be entirely non-local, then any quantum mechanical predictions can be recovered. In this paper, we conside r general hidden variable models which can have both local and non-local parts. We then show the existence of (experimentally verifiable) quantum correlations that are incompatible with any hidden variable model having a non-trivial local part, such as the model proposed by Leggett.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا