ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Circuits for Isometries

104   0   0.0 ( 0 )
 نشر من قبل Roger Colbeck
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the decomposition of arbitrary isometries into a sequence of single-qubit and Controlled-NOT (C-NOT) gates. In many experimental architectures, the C-NOT gate is relatively expensive and hence we aim to keep the number of these as low as possible. We derive a theoretical lower bound on the number of C-NOT gates required to decompose an arbitrary isometry from m to n qubits, and give three explicit gate decompositions that achieve this bound up to a factor of about two in the leading order. We also perform some bespoke optimizations for certain cases where m and n are small. In addition, we show how to apply our result for isometries to give decomposition schemes for arbitrary quantum operations and POVMs via Stinesprings theorem. These results will have an impact on experimental efforts to build a quantum computer, enabling them to go further with the same resources.



قيم البحث

اقرأ أيضاً

We consider the task of breaking down a quantum computation given as an isometry into C-NOTs and single-qubit gates, while keeping the number of C-NOT gates small. Although several decompositions are known for general isometries, here we focus on a m ethod based on Householder reflections that adapts well in the case of sparse isometries. We show how to use this method to decompose an arbitrary isometry before illustrating that the method can lead to significant improvements in the case of sparse isometries. We also discuss the classical complexity of this method and illustrate its effectiveness in the case of sparse state preparation by applying it to randomly chosen sparse states.
Universal gate sets for quantum computing have been known for decades, yet no universal gate set has been proposed for particle-conserving unitaries, which are the operations of interest in quantum chemistry. In this work, we show that controlled sin gle-excitation gates in the form of Givens rotations are universal for particle-conserving unitaries. Single-excitation gates describe an arbitrary $U(2)$ rotation on the two-qubit subspace spanned by the states $|01rangle, |10rangle$, while leaving other states unchanged -- a transformation that is analogous to a single-qubit rotation on a dual-rail qubit. The proof is constructive, so our result also provides an explicit method for compiling arbitrary particle-conserving unitaries. Additionally, we describe a method for using controlled single-excitation gates to prepare an arbitrary state of a fixed number of particles. We derive analytical gradient formulas for Givens rotations as well as decompositions into single-qubit and CNOT gates. Our results offer a unifying framework for quantum computational chemistry where every algorithm is a unique recipe built from the same universal ingredients: Givens rotations.
Quantum state tomography is a key process in most quantum experiments. In this work, we employ quantum machine learning for state tomography. Given an unknown quantum state, it can be learned by maximizing the fidelity between the output of a variati onal quantum circuit and this state. The number of parameters of the variational quantum circuit grows linearly with the number of qubits and the circuit depth, so that only polynomial measurements are required, even for highly-entangled states. After that, a subsequent classical circuit simulator is used to transform the information of the target quantum state from the variational quantum circuit into a familiar format. We demonstrate our method by performing numerical simulations for the tomography of the ground state of a one-dimensional quantum spin chain, using a variational quantum circuit simulator. Our method is suitable for near-term quantum computing platforms, and could be used for relatively large-scale quantum state tomography for experimentally relevant quantum states.
165 - Daochen Wang 2019
In a recent breakthrough, Bravyi, Gosset and K{o}nig (BGK) [Science, 2018] proved that simulating constant depth quantum circuits takes classical circuits $Omega(log n)$ depth. In our paper, we first formalise their notion of simulation, which we cal l possibilistic simulation. Then, from well-known results, we deduce that their circuits can be simulated in depth $O(log^{2} n)$. Separately, we construct explicit classical circuits that can simulate any depth-$d$ quantum circuit with Clifford and $t$ $T$-gates in depth $O(d+t)$. Our classical circuits use ${text{NOT, AND, OR}}$ gates of fan-in $leq 2$.
A general method to mitigate the effect of errors in quantum circuits is outlined. The method is developed in sight of characteristics that an ideal method should possess and to ameliorate an existing method which only mitigates state preparation and measurement errors. The method is tested on different IBM Q quantum devices, using randomly generated circuits with up to four qubits. A large majority of results show significant error mitigation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا