ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper provides a detailed analysis of the main component of the slow neutron capture process (the s-process), which accounts for the solar abundances of half of the nuclei with 90 <~ A <~ 208. We examine the impact of the uncertainties of the tw o neutron sources operating in low-mass asymptotic giant branch (AGB) stars: the 13C(alpha, n)16O reaction, which releases neutrons radiatively during interpulse periods (kT ~ 8 keV), and the 22Ne(alpha, n)25Mg reaction, partially activated during the convective thermal pulses (TPs). We focus our attention on the branching points that mainly influence the abundance of s-only isotopes. In our AGB models, the 13C is fully consumed radiatively during interpulse. In this case, we find that the present uncertainty associated to the 13C(alpha, n)16O reaction has marginal effects on s-only nuclei. On the other hand, a reduction of this rate may increase the amount of residual (or unburned) 13C at the end of the interpulse: in this condition, the residual 13C is burned at higher temperature in the convective zone powered by the following TP. The neutron burst produced by the 22Ne(alpha, n)25Mg reaction has major effects on the branches along the s path. The contributions of s-only isotopes with 90 <~ A <= 204 are reproduced within solar and nuclear uncertainties, even if the 22Ne(alpha, n)25Mg rate is varied by a factor of two. Improved beta-decay and neutron capture rates of a few key radioactive nuclides would help to attain a comprehensive understanding of the solar main component.
We identify three isotopic tracers that can be used to constrain the $^{13}C$-pocket and show the correlated isotopic ratios of Sr and Ba in single mainstream presolar SiC grains. These newly measured data can be explained by postprocess AGB model ca lculations with large $^{13}C$-pockets with a range of relatively low $^{13}C$ concentrations, which may suggest that multiple mixing processes contributed to the $^{13}C$-pocket formation in parent AGB stars.
We present strontium, barium, carbon, and silicon isotopic compositions of 61 acid-cleaned presolar SiC grains from Murchison. Comparison with previous data shows that acid washing is highly effective in removing both strontium and barium contaminati on. For the first time, by using correlated $^{88}Sr$/$^{86}Sr$ and $^{138}Ba$/$^{136}Ba$ ratios in mainstream SiC grains, we are able to resolve the effect of $^{13}C$ concentration from that of $^{13}C$-pocket mass on s-process nucleosynthesis, which points towards the existence of large $^{13}C$-pockets with low $^{13}C$ concentration in AGB stars. The presence of such large $^{13}$R-pockets with a variety of relatively low $^{13}C$ concentrations seems to require multiple mixing processes in parent AGB stars of mainstream SiC grains.
We present postprocess AGB nucleosynthesis models with different $^{13}$C-pocket internal structures to better explain zirconium isotope measurements in mainstream presolar SiC grains by Nicolussi et al. (1997) and Barzyk et al. (2007). We show that higher-than-solar $^{92}$Zr/$^{94}$Zr ratios can be predicted by adopting a $^{13}$C-pocket with a flat $^{13}$C profile, instead of the previous decreasing-with-depth $^{13}$C profile. The improved agreement between grain data for zirconium isotopes and AGB models provides additional support for a recent proposal of a flat $^{13}$C profile based on barium isotopes in mainstream SiC grains by Liu et al. (2014).
We explore SNe Ia as p-process sites in the framework of two-dimensional SN Ia delayed detonation and pure deflagration models. The WD precursor is assumed to have reached the Chandrasekhar mass in a binary system by mass accretion from a giant/main sequence companion. We use enhanced s-seed distributions, obtained from a sequence of thermal pulse instabilities both in the AGB phase and in the accreted material. We apply the tracer-particle method to reconstruct the nucleosynthesis by the thermal histories of Lagrangian particles, passively advected in the hydrodynamic calculations. For each particle we follow the explosive nucleosynthesis with a detailed network for all isotopes up to 209Bi. We find that SNe Ia can produce a large amount of p-nuclei, both the light p-nuclei below A=120 and the heavy-p nuclei, at quite flat average production factors, tightly related to the s-process seed distribution. For the first time, we find a stellar source able to produce both, light and heavy p-nuclei almost at the same level as 56Fe, including the very debated neutron magic 92,94Mo and 96,98Ru. We also find that there is an important contribution from p-process nucleosynthesis to the s-only nuclei 80Kr, 86Sr, to the neutron magic 90Zr, and to the neutron-rich 96Zr. Finally, we investigate the metallicity effect on p-process. Starting with different s-process seed distributions, for two metallicities Z = 0.02 and Z = 0.001, running SNe Ia models with different initial composition, we estimate that SNe Ia can contribute to, at least, 50% of the solar p-process composition.
Nucleosynthesis in the s process takes place in the He burning layers of low mass AGB stars and during the He and C burning phases of massive stars. The s process contributes about half of the element abundances between Cu and Bi in solar system mate rial. Depending on stellar mass and metallicity the resulting s-abundance patterns exhibit characteristic features, which provide comprehensive information for our understanding of the stellar life cycle and for the chemical evolution of galaxies. The rapidly growing body of detailed abundance observations, in particular for AGB and post-AGB stars, for objects in binary systems, and for the very faint metal-poor population represents exciting challenges and constraints for stellar model calculations. Based on updated and improved nuclear physics data for the s-process reaction network, current models are aiming at ab initio solution for the stellar physics related to convection and mixing processes. Progress in the intimately related areas of observations, nuclear and atomic physics, and stellar modeling is reviewed and the corresponding interplay is illustrated by the general abundance patterns of the elements beyond iron and by the effect of sensitive branching points along the s-process path. The strong variations of the s-process efficiency with metallicity bear also interesting consequences for Galactic chemical evolution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا