ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlated Strontium and Barium Isotopic Compositions of Acid-Cleaned Single Silicon Carbides from Murchison

64   0   0.0 ( 0 )
 نشر من قبل Nan Liu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present strontium, barium, carbon, and silicon isotopic compositions of 61 acid-cleaned presolar SiC grains from Murchison. Comparison with previous data shows that acid washing is highly effective in removing both strontium and barium contamination. For the first time, by using correlated $^{88}Sr$/$^{86}Sr$ and $^{138}Ba$/$^{136}Ba$ ratios in mainstream SiC grains, we are able to resolve the effect of $^{13}C$ concentration from that of $^{13}C$-pocket mass on s-process nucleosynthesis, which points towards the existence of large $^{13}C$-pockets with low $^{13}C$ concentration in AGB stars. The presence of such large $^{13}$R-pockets with a variety of relatively low $^{13}C$ concentrations seems to require multiple mixing processes in parent AGB stars of mainstream SiC grains.


قيم البحث

اقرأ أيضاً

We report Mo isotopic compositions of 37 presolar SiC grains of types Y (19) and Z (18), rare types commonly argued to have formed in lower-than-solar metallicity asymptotic giant branch (AGB) stars. Direct comparison of the Y and Z grain data with d ata for mainstream grains from AGB stars of close-to-solar metallicity demonstrates that the three types of grains have indistinguishable Mo isotopic compositions. We show that the Mo isotope data can be used to constrain the maximum stellar temperatures (TMAX) during thermal pulses in AGB stars. Comparison of FRUITY Torino AGB nucleosynthesis model calculations with the grain data for Mo isotopes points to an origin from low-mass (~1.5-3 Msun) rather than intermediate-mass (>3-~9 Msun) AGB stars. Because of the low efficiency of 22Ne({alpha},n)25Mg at the low TMAX values attained in low-mass AGB stars, model calculations cannot explain the large 30Si excesses of Z grains as arising from neutron capture, so these excesses remain a puzzle at the moment.
We provide measurements of the Ba isotopic fractions for five metal-poor stars derived with an LTE analysis using 1D model stellar atmospheres. We use high resolution (Requiv{lambda}/Delta{lambda}=90000-95000), very high signal-to-noise (S/N>500) spe ctra to determine the fraction of odd Ba isotopes (fodd) by measuring subtle asymmetries in the profile of the Ba ii line at 4554 {AA}. We also use two different macroturbulent broadening techniques, Gaussian and radial-tangential, to model the Fe lines of each star, and propagate each technique to model macroturbulent broadening in the Ba 4554 {AA} line. We conduct a 1D non-LTE (NLTE) treatment of the Fe lines in the red giant HD122563 and the subgiant HD140283 in an attempt to improve the fitting. We determine [Ba/Eu] ratios for the two giants in our study, HD122563 and HD88609, which can also be used to determine the relative contribution of the s- and r-processes to heavy-element nucleosynthesis, for comparison with fodd. We find fodd for HD122563, HD88609 and HD84937, BD+26circ3578 and BD-04circ3208 to be -0.12pm0.07, -0.02pm0.09, and -0.05pm0.11, 0.08pm0.08 and 0.18pm0.08 respectively. This means that all stars examined here show isotopic fractions more compatible with an s-process dominated composition. The [Ba/Eu] ratios in HD122563 and HD88609 are found to be -0.20pm0.15 and -0.47pm0.15 respectively, which indicate instead an r-process signature. We report a better statistical fit to the majority of Fe profiles in each star when employing a radial-tangential broadening technique during our 1D LTE investigation. We have shown that, from a statistical point of view, one must consider using a radial-tangential broadening technique rather than a Gaussian one to model Fe line macroturbulences when working in 1D. No improvement to Fe line fitting is seen when employing a NLTE treatment.
63 - Y. C. Liang 2003
Chemical compositions of four barium stars HD 26886, HD 27271, HD 50082 and HD 98839 are studied based on high resolution, high signal-to-noise Echelle spectra. Results show that all of them are disk stars. Their alpha and iron peak elements are simi lar to the solar abundances. The neutron-capture process elements are overabundant relative to the Solar. The heavy-element abundances of the strong Ba star HD 50082 are higher than those of other three mild Ba stars. Its mass is 1.32Msun (+0.28,-0.22Msun), and is consistent with the average mass of strong Ba stars (1.5Msun). For mild Ba star HD 27271 and HD 26886, the derived masses are 1.90Msun (+0.25,-0.20Msun) and 2.78Msun (+0.75,-0.78M_sun), respectively, which are consistent with the average mass of mild Ba stars. We also calculate the theoretical abundances of Ba stars by combining the AGB stars nucleosynthesis and wind accretion formation scenario of Ba binary systems. The comparisons between the observed abundance patterns of the sample stars with the theoretical results show that wind accretion scenario can explain the abundance patterns of HD 50082 and HD 27271 well, but fail to explain the abundances of HD 26886. It means that the mild Ba star HD 26886, with shorter orbital period (P<1600 d), may be formed from other scenarios. The high mass mild Ba star HD 98839, with 3.62M_sun, and with very long orbital period (P>11000 d), may be either a star with the heavy elements enriched by itself or a true Ba star.
We present an elemental abundance analysis for four newly discovered ultra metal-poor stars from the Hamburg/ESO survey, with $mathrm{[Fe/H]}leq-4$. Based on high-resolution, high signal-to-noise spectra, we derive abundances for 17 elements in the r ange from Li to Ba. Three of the four stars exhibit moderate to large over-abundances of carbon, but have no enhancements in their neutron-capture elements. The most metal-poor star in the sample, HE~0233$-$0343 ($mathrm{[Fe/H]} = -4.68$), is a subgiant with a carbon enhancement of $mathrm{[C/Fe]}= +3.5$, slightly above the carbon-enhancement plateau suggested by Spite et al. No carbon is detected in the spectrum of the fourth star, but the quality of its spectrum only allows for the determination of an upper limit on the carbon abundance ratio of $mathrm{[C/Fe]} < +1.7$. We detect lithium in the spectra of two of the carbon-enhanced stars, including HE~0233$-$0343. Both stars with Li detections are Li-depleted, with respect to the Li plateau for metal-poor dwarfs found by Spite & Spite. This suggests that whatever site(s) produced C either do not completely destroy lithium, or that Li has been astrated by early-generation stars and mixed with primordial Li in the gas that formed the stars observed at present. The derived abundances for the $alpha$-elements and iron-peak elements of the four stars are similar to those found in previous large samples of extremely and ultra metal-poor stars. Finally, a large spread is found in the abundances of Sr and Ba for these stars, possibly influenced by enrichment from fast rotating stars in the early universe.
We present atmospheric models of red giant stars of various metallicities, including extremely metal poor (XMP, [Fe/H]<-3.5) models, with many chemical species, including, significantly, the first two ionization stages of Strontium (Sr) and Barium (B a), treated in Non-Local Thermodynamic Equilibrium (NLTE) with various degrees of realism. We conclude that 1) for all lines that are useful Sr and Ba abundance diagnostics the magnitude and sense of the computed NLTE effect on the predicted line strength is metallicity dependent, 2) the indirect NLTE effect of overlap between Ba and Sr transitions and transitions of other species that are also treated in NLTE non-negligibly enhances NLTE abundance corrections for some lines, 3) the indirect NLTE effect of NLTE opacity of other species on the equilibrium structure of the atmospheric model is not significant, 4) the computed NLTE line strengths differ negligibly if collisional b-b and b-f rates are an order of magnitude smaller or larger than those calculated with standard analytic formulae, and 5) the effect of NLTE upon the resonance line of Ba II at 4554.03 AA is independent of whether that line is treated with hyperfine splitting. As a result, the derivation of abundances of Ba and Sr for metal-poor red giant stars with LTE modeling that are in the literature should be treated with caution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا