ترغب بنشر مسار تعليمي؟ اضغط هنا

We present spontaneous symmetry breaking in a nanoscale version of a setup prolific in classical mechanics: two coupled nanomechanical pendulums. The two pendulums are electron shuttles fabricated as nanopillars and placed between two capacitor plate s in a homogeneous electric field. Instead of being mechanically coupled through a spring they exchange electrons, i.e. they shuttle electrons from the source to the drain capacitor plate. Nonzero DC current through this system by external AC excitation is caused via dynamical symmetry breaking. This symmetry-broken current appears at sub- and superharmonics of the fundamental mode of the coupled system.
We present measurements on direct radio-frequency pumping of ion channels and pores bound in bilipid membranes. We make use of newly developed microcoaxes, which allow delivering the high frequency signal in close proximity to the membrane bound prot eins and ion channels. We find rectification of the radio-frequency signal, which is used to pump ions through the channels and pores.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا