ترغب بنشر مسار تعليمي؟ اضغط هنا

Without prior knowledge, distinguishing different languages may be a hard task, especially when their borders are permeable. We develop an extension of spectral clustering -- a powerful unsupervised classification toolbox -- that is shown to resolve accurately the task of soft language distinction. At the heart of our approach, we replace the usual hard membership assignment of spectral clustering by a soft, probabilistic assignment, which also presents the advantage to bypass a well-known complexity bottleneck of the method. Furthermore, our approach relies on a novel, convenient construction of a Markov chain out of a corpus. Extensive experiments with a readily available system clearly display the potential of the method, which brings a visually appealing soft distinction of languages that may define altogether a whole corpus.
It is hard to exaggerate the role of economic aggregators -- functions that summarize numerous and / or heterogeneous data -- in economic models since the early XX$^{th}$ century. In many cases, as witnessed by the pioneering works of Cobb and Dougla s, these functions were information quantities tailored to economic theories, i.e. they were built to fit economic phenomena. In this paper, we look at these functions from the complementary side: information. We use a recent toolbox built on top of a vast class of distortions coined by Bregman, whose application field rivals metrics in various subfields of mathematics. This toolbox makes it possible to find the quality of an aggregator (for consumptions, prices, labor, capital, wages, etc.), from the standpoint of the information it carries. We prove a rather striking result. From the informational standpoint, well-known economic aggregators do belong to the textit{optimal} set. As common economic assumptions enter the analysis, this large set shrinks, and it essentially ends up textit{exactly fitting} either CES, or Cobb-Douglas, or both. To summarize, in the relevant economic contexts, one could not have crafted better some aggregator from the information standpoint. We also discuss global economic behaviors of optimal information aggregators in general, and present a brief panorama of the links between economic and information aggregators. Keywords: Economic Aggregators, CES, Cobb-Douglas, Bregman divergences
The Voronoi diagram of a finite set of objects is a fundamental geometric structure that subdivides the embedding space into regions, each region consisting of the points that are closer to a given object than to the others. We may define many varian ts of Voronoi diagrams depending on the class of objects, the distance functions and the embedding space. In this paper, we investigate a framework for defining and building Voronoi diagrams for a broad class of distance functions called Bregman divergences. Bregman divergences include not only the traditional (squared) Euclidean distance but also various divergence measures based on entropic functions. Accordingly, Bregman Voronoi diagrams allow to define information-theoretic Voronoi diagrams in statistical parametric spaces based on the relative entropy of distributions. We define several types of Bregman diagrams, establish correspondences between those diagrams (using the Legendre transformation), and show how to compute them efficiently. We also introduce extensions of these diagrams, e.g. k-order and k-bag Bregman Voronoi diagrams, and introduce Bregman triangulations of a set of points and their connexion with Bregman Voronoi diagrams. We show that these triangulations capture many of the properties of the celebrated Delaunay triangulation. Finally, we give some applications of Bregman Voronoi diagrams which are of interest in the context of computational geometry and machine learning.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا