ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate a recently proposed method for measuring the Hubble constant from gravitational wave detections of binary black hole coalescences without electromagnetic counterparts. In the absence of a direct redshift measurement, the missing inform ation on the left-hand side of the Hubble-Lema^itre law is provided by the statistical knowledge on the redshift distribution of sources. We assume that source distribution in redshift depends on just one unknown hyper-parameter, modeling our ignorance of the astrophysical binary black hole distribution. With tens of thousands of these black sirens -- a realistic figure for the third generation detectors Einstein Telescope and Cosmic Explorer -- an observational constraint on the value of the Hubble parameter at percent level can be obtained. This method has the advantage of not relying on electromagnetic counterparts, which accompany a very small fraction of gravitational wave detections, nor on often unavailable or incomplete galaxy catalogs.
We compute the effect of scattering gravitational radiation off the static background curvature, up to second order in Newton constant, known in literature as tail and tail-of-tail processes, for generic electric and magnetic multipoles. Starting fro m the multipole expansion of composite compact objects, and as expected due to the known electric quadrupole case, both long- and short-distance (UV) divergences are encountered. The former disappears from properly defined observables, the latter are renormalized and their associated logarithms give rise to a classical renormalization group flow. UV divergences alert for incompleteness of the multipolar description of the composite source, and are expected not to be present in a UV-complete theory, as explicitly derived in literature for the case of conservative dynamics. Logarithmic terms from tail-of-tail processes associated to generic magnetic multipoles are computed in this work for the first time.
We revisit several aspects of the interaction of self-gravitating, slowly varying sources with their own emitted radiation within the context of post-Newtonian approximation to General Relativity. We discuss and clarify the choice of boundary conditi ons of Greens functions used to determine conservative potentials, and the interplay between the so-called near and far zones, as well as the relation between far zone ultra-violet divergences and emitted power. Both near and far zone contributions are required for the computation of the conservative dynamics. Within a field-theory approach we rederive far-zone self-energy processes, known as tail and memory effects, generalising the calculation of their divergent part to arbitrary order in the post-Newtonian expansion.
A factorisation property of Feynman diagrams in the context the Effective Field Theory approach to the compact binary problem has been recently employed to efficiently determine the static sector of the potential at fifth post-Newtonian (5PN) order. We extend this procedure to the case of non-static diagrams and we use it to fix, by means of elementary algebraic manipulations, the value of more than one thousand diagrams at 5PN order, that is a substantial fraction of the diagrams needed to fully determine the dynamics at 5PN. This procedure addresses the redundancy problem that plagues the computation of the binding energy with respect to more efficient observables like the scattering angle, thus making the EFT approach in harmonic gauge at least as scalable as the others methods.
We apply the classical double copy to the calculation of self-energy of composite systems with multipolar coupling to gravitational field, obtaining next-to-leading order results in the gravitational coupling $G_N$ by generalizing color to kinematics replacement rules known in literature. When applied to the multipolar description of the two-body system, the self-energy diagrams studied in this work correspond to tail processes, whose physical interpretation is of radiation being emitted by the non-relativistic source, scattered by the curvature generated by the binary system and then re-absorbed by the same source. These processes contribute to the conservative two-body dynamics and the present work represents a decisive step towards the systematic use of double copy within the multipolar post-Minkowskian expansion.
We discuss the first-time calculation of the static gravitational two-body potential up to fifth post-Newtonian(PN) order. The results are achieved through a manifest factorization property of the odd PN diagrams. The factorization property is illustrated also at first and third PN order.
We determine the gravitational interaction between two compact bodies up to the sixth power in Newtons constant GN, in the static limit. This result is achieved within the effective field theory approach to General Relativity, and exploits a manifest factorization property of static diagrams which allows to derive static post Newtonian (PN) contributions of (2n+1)-order in terms of lower order ones. We recompute in this fashion the 1PN and 3PN static potential, and present the novel 5PN contribution.
We apply the Effective Field Theory approach to General Relativity, introduced by Goldberger and Rothstein, to study point-like and string-like sources in the context of scalar-tensor theories of gravity. Within this framework we compute the classica l energy-momentum tensor renormalization to first Post-Newtonian order or, in the case of extra scalar fields, up to first order in the (non-derivative) trilinear interaction terms: this allows to write down the corrections to the standard (Newtonian) gravitational potential and to the extra-scalar potential. In the case of one-dimensional extended sources we give an alternative derivation of the renormalization of the string tension enabling a re-analysis of the discrepancy between the results obtained by Dabholkar and Harvey in one paper and by Buonanno and Damour in another, already discussed in the latter.
We have set up and tested a pipeline for processing the data from a spherical gravitational wave detector with six transducers. The algorithm exploits the multichannel capability of the system and provides a list of candidate events with their arriva l direction. The analysis starts with the conversion of the six detector outputs into the scalar and the five quadrupolar modes of the sphere, which are proportional to the corresponding gravitational wave spherical components. Event triggers are then generated by an adaptation of the WaveBurst algorithm. Event validation and direction reconstruction are made by cross-checking two methods of different inspiration: geometrical (lowest eigenvalue) and probabilistic (maximum likelihood). The combination of the two methods is able to keep substantially unaltered the efficiency and can reduce drastically the detections of fake events (to less than ten per cent). We show a quantitative test of these ideas by simulating the operation of the resonant spherical detector miniGRAIL, whose planned sensitivity in its frequency band (few hundred Hertzs around 3 kHz) is comparable with the present LIGO one.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا