ﻻ يوجد ملخص باللغة العربية
We compute the effect of scattering gravitational radiation off the static background curvature, up to second order in Newton constant, known in literature as tail and tail-of-tail processes, for generic electric and magnetic multipoles. Starting from the multipole expansion of composite compact objects, and as expected due to the known electric quadrupole case, both long- and short-distance (UV) divergences are encountered. The former disappears from properly defined observables, the latter are renormalized and their associated logarithms give rise to a classical renormalization group flow. UV divergences alert for incompleteness of the multipolar description of the composite source, and are expected not to be present in a UV-complete theory, as explicitly derived in literature for the case of conservative dynamics. Logarithmic terms from tail-of-tail processes associated to generic magnetic multipoles are computed in this work for the first time.
We provide a prescription to compute the gravitational multipole moments of compact objects for asymptotically de Sitter spacetimes. Our prescription builds upon a recent definition of the gravitational multipole moments in terms of Noether charges a
We transform the metric of an isolated matter source in the multipolar post-Minkowskian approximation from harmonic (de Donder) coordinates to radiative Newman-Unti (NU) coordinates. To linearized order, we obtain the NU metric as a functional of the
We study gravitational lensing by a generic extended mass distribution. For that, we consider the diffraction of electromagnetic (EM) waves by an extended, weakly aspherical, gravitating object. We account for the static gravitational field of this l
We consider gravitational lensing by a generic extended mass distribution. We represent the static external gravitational field of the lens as a potential via an infinite set of symmetric trace free (STF) moments. We discuss the possibility of determ
In higher dimensions than four, conventional uniqueness theorem in asymptotically flat space-times does not hold, i.e., black objects can not be classified only by the mass, angular momentum and charge. In this paper, we define multipole moments for