ترغب بنشر مسار تعليمي؟ اضغط هنا

A characteristic value formulation of the Weyl double copy leads to an asymptotic formulation. We find that the Weyl double copy holds asymptotically in cases where the full solution is algebraically general, using rotating STU supergravity black hol es as an example. The asymptotic formulation provides clues regarding the relation between asymptotic symmetries that follows from the double copy. Using the C-metric as an example, we show that a previous interpretation of this gravity solution as a superrotation has a single copy analogue relating the appropriate Lienard-Wiechert potential to a large gauge transformation.
The three-point amplitude is the key building block in the on-shell approach to scattering amplitudes. We show that the classical objects computed by massive three-point amplitudes in gauge theory and gravity are Newman-Penrose scalars in a split-sig nature spacetime, where three-point amplitudes can be defined for real kinematics. In fact, the quantum state set up by the particle is a coherent state fully determined by the three-point amplitude due to an eikonal-type exponentiation. Having identified this simplest classical solution from the perspective of scattering amplitudes, we explore the double copy of the Newman-Penrose scalars induced by the traditional double copy of amplitudes, and find that it coincides with the Weyl version of the classical double copy. We also exploit the Kerr-Schild version of the classical double copy to determine the exact spacetime metric in the gravitational case. Finally, we discuss the direct implication of these results for Lorentzian signature via analytic continuation.
We establish the status of the Weyl double copy relation for radiative solutions of the vacuum Einstein equations. We show that all type N vacuum solutions, which describe the radiation region of isolated gravitational systems with appropriate fall-o ff for the matter fields, admit a degenerate Maxwell field that squares to give the Weyl tensor. The converse statement also holds, i.e. if there exists a degenerate Maxwell field on a curved background, then the background is type N. This relation defines a scalar that satisfies the wave equation on the background. We show that for non-twisting radiative solutions, the Maxwell field and the scalar also satisfy the Maxwell equation and the wave equation on Minkowski spacetime. Hence, non-twisting solutions have a straightforward double copy interpretation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا