ترغب بنشر مسار تعليمي؟ اضغط هنا

We present scaling relations between structural properties of nuclear star clusters and their host galaxies for a sample of early-type dwarf galaxies observed as part of the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) Coma Cluster Survey. We have analysed the light profiles of 200 early-type dwarf galaxies in the magnitude range $16.0 < m_{F814W} < 22.6 $ mag, corresponding to $-19.0 < M_{F814W} < -12.4 $ mag. Nuclear star clusters are detected in 80% of the galaxies, thus doubling the sample of HST-observed early-type dwarf galaxies with nuclear star clusters. changed{We confirm that the} nuclear star cluster detection fraction decreases strongly toward faint magnitudes. The luminosities of nuclear star clusters do not scale linearly with host galaxy luminosity. A linear fit yields L$_{nuc} sim $L$_{gal}^{0.57pm0.05}$. The nuclear star cluster-host galaxy luminosity scaling relation for low-mass early-type dwarf galaxies is consistent with formation by globular cluster accretion. We find that at similar luminosities, galaxies with higher Sersic indices have slightly more luminous nuclear star clusters. Rounder galaxies have on average more luminous clusters. Some of the nuclear star clusters are resolved, despite the distance of Coma. We argue that the relation between nuclear star cluster mass and size is consistent with both formation by globular cluster accretion and in situ formation. Our data are consistent with GC inspiraling being the dominant mechanism at low masses, although the observed trend with Sersic index suggests that in situ star formation is an important second order effect.
We investigate the [3.6] - [4.5] Spitzer-IRAC colour behaviour of the early-type galaxies of the SAURON survey, a representative sample of 48 nearby ellipticals and lenticulars. We investigate how this colour, which is unaffected by dust extinction, can be used to constrain the stellar populations in these galaxies. We find a tight relation between the [3.6]-[4.5] colour and effective velocity dispersion, a good mass-indicator in early-type galaxies. Contrary to other colours in the optical and near-infrared, we find that the colours become bluer for larger galaxies. The relations are tighter when using the colour inside r_e, rather than the much smaller r_e/8 aperture, due to the presence of young populations in the central regions. We also obtain strong correlations between the [3.6]-[4.5] colour and 3 strong absorption lines (H beta, Mg b and Fe 5015). Comparing our data with the models of Marigo et al., which show that more metal rich galaxies are bluer, we can explain our results in a way consistent with results from the optical, by stating that larger galaxies are more metal rich. The blueing is caused by a strong CO absorption band, whose line strength increases strongly with decreasing temperature and which covers a considerable fraction of the 4.5 micron filter. In galaxies that contain a compact radio source, the [3.6]-[4.5] colour is generally slightly redder than in the other galaxies, indicating small amounts of either hot dust, non-thermal emission, or young stars near the center. We find that the large majority of the galaxies show redder colours with increasing radius. abbreviated...
We discuss some recent integral field spectroscopy using the SAURON instrument of a sample consisting of 24 early-type spirals, part of the SAURON Survey, and 18 late-type spirals. Using 2-dimensional maps of their stellar radial velocity, velocity d ispersion, and absorption line strength, it is now much easier to understand the nature of nearby galactic bulges. We discuss a few highlights of this work, and point out some new ideas about the formation of galactic bulges.
We present absorption line strength maps of a sample of 24 representative early-type spiral galaxies, mostly of type Sa, obtained as part of the SAURON survey of nearby galaxies using our custom-built integral-field spectrograph. Using high-quality s pectra, spatially binned to a constant signal-to-noise, we measure several key age, metallicity and abundance ratio sensitive indices from the Lick/IDS system over a contiguous two-dimensional field including bulge and inner disc. We present maps of H beta, Fe 5015 and Mg b, for each galaxy The absorption line maps show that many galaxies contain some younger populations (<= 1 Gyr), distributed in small or large inner discs, or in circumnuclear star forming rings. In many cases these young stars are formed in circumnuclear mini-starbursts, which are dominating the light in the centres of some of the early-type spirals. These mini-starburst cause a considerable scatter in index-index diagrams such as Mg b- H beta and Mg b -Fe 5015, more than is measured for early-type galaxies. We find that the central regions of Sa galaxies display a wide range in ages, even within the galaxies. 50% of the sample show velocity dispersion drops in their centres. All of the galaxies of our sample lie on or below the Mg b- $sigma$ relation for elliptical galaxies in the Coma cluster, and above the H beta absorption line - $sigma$ relation for elliptical galaxies. If those relations are considered to be relations for the oldest local galaxies we see that our sample of spirals has a considerable scatter in age, with the largest scatter at the lowest $sigma$. This is in disagreement with highly inclined samples, in which generally only old stellar populations are found in the central regions. All this can be understood if ... (see paper for rest of abstract)
We present absorption line-strength maps for a sample of 18 Sb-Sd galaxies observed using the integral-field spectrograph SAURON. The SAURON spectral range allows the measurement of the Lick/IDS indices Hbeta, Fe5015 and Mgb, which can be used to est imate the stellar population parameters. We present here the two-dimensional line-strength maps for each galaxy. From the maps, we learn that late-type spiral galaxies tend to have high Hbeta and low Fe5015 and Mgb values, and that the Hbeta index has often a positive gradient over the field, while the metal indices peak in the central region. We investigate the relations between the central line-strength indices and their correlations with morphological type and central velocity dispersion, and compare the observed behaviour with that for ellipticals, lenticulars and early-type spirals from the SAURON survey. We find that our galaxies lie below the Mg - sigma relation determined for elliptical galaxies and that the indices show a clear trend with morphological type. From the line-strength maps we calculate age, metallicity and abundance ratio maps and discuss the results from a one-SSP approach and from a two-SSP approach. Late-type galaxies are generally younger and more metal poor than ellipticals and have abundance ratios closer to solar values. We also explore a continuous star formation scenario, and try to recover the star formation history using the evolutionary models of Bruzual & Charlot (2003), assuming constant or exponentially declining star formation rate (SFR). We find a correlation between the e-folding time-scale tau of the starburst and the central velocity dispersion: more massive galaxies tend to have shorter tau, suggesting that the star formation happened long ago and has now basically ended, while for smaller objects with larger values of tau it is still active.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا