ترغب بنشر مسار تعليمي؟ اضغط هنا

Absorption line-strengths of 18 late-type spiral galaxies observed with SAURON

106   0   0.0 ( 0 )
 نشر من قبل Katia Ganda
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present absorption line-strength maps for a sample of 18 Sb-Sd galaxies observed using the integral-field spectrograph SAURON. The SAURON spectral range allows the measurement of the Lick/IDS indices Hbeta, Fe5015 and Mgb, which can be used to estimate the stellar population parameters. We present here the two-dimensional line-strength maps for each galaxy. From the maps, we learn that late-type spiral galaxies tend to have high Hbeta and low Fe5015 and Mgb values, and that the Hbeta index has often a positive gradient over the field, while the metal indices peak in the central region. We investigate the relations between the central line-strength indices and their correlations with morphological type and central velocity dispersion, and compare the observed behaviour with that for ellipticals, lenticulars and early-type spirals from the SAURON survey. We find that our galaxies lie below the Mg - sigma relation determined for elliptical galaxies and that the indices show a clear trend with morphological type. From the line-strength maps we calculate age, metallicity and abundance ratio maps and discuss the results from a one-SSP approach and from a two-SSP approach. Late-type galaxies are generally younger and more metal poor than ellipticals and have abundance ratios closer to solar values. We also explore a continuous star formation scenario, and try to recover the star formation history using the evolutionary models of Bruzual & Charlot (2003), assuming constant or exponentially declining star formation rate (SFR). We find a correlation between the e-folding time-scale tau of the starburst and the central velocity dispersion: more massive galaxies tend to have shorter tau, suggesting that the star formation happened long ago and has now basically ended, while for smaller objects with larger values of tau it is still active.

قيم البحث

اقرأ أيضاً

We present the stellar and gas kinematics of a sample of 18 nearby late-type spiral galaxies (Hubble types ranging from Sb to Sd), observed with the integral-field spectrograph SAURON at the 4.2-m William Herschel Telescope. SAURON covers the spectra l range 4800-5380 A, allowing us to measure the Hbeta, Fe, Mgb absorption features and the emission in the Hbeta line and the [OIII], and [NI] doublets over a 33x41 arcsec field of view. The maps cover the nuclear region of these late-type galaxies and in all cases include the entire bulge. In many cases the stellar kinematics suggests the presence of a cold inner region, as visible from a central drop in the stellar velocity dispersion. The ionised gas is almost ubiquitous and behaves in a complicated fashion: the gas velocity fields often display more features than the stellar ones, including wiggles in the zero-velocity lines, irregular distributions, ring-like structures. The line ratio [OIII]/Hbeta often takes on low values over most of the field, probably indicating a wide-spread star formation.
In this paper we present measurements of velocity dispersions and Lick indices for 509 galaxies in the local Universe, based on high signal-to-noise, long slit spectra obtained with the 1.52 m ESO telescope at La Silla. The conversion of our measurem ents into the Lick/IDS system was carried out following the general prescription of Worthey and Ottaviani 1997. Comparisons of our measurements with those of other authors show, in general, good agreement. We also examine the dependence between these indices (e.g., Hbeta, Mg_2, Fe5270 and NaD) and the central velocity dispersion (sigma), and we find that they are consistent with those previously reported in the literature. Benefiting from the relatively large size of the sample, we are able to investigate the dependence of these relations on morphology and environment, here represented by the local galaxy density. We find that for metallic lines these relations show no significant dependence on environment or morphology, except in the case of NaD, which shows distinct behavior for E and S0. On the other hand, the Hbeta-logsigma shows a significant difference as a function of the local density of galaxies, which we interpret as being caused by the truncation of star formation in high density environments. Comparing our results with those obtained by other authors we find a few discrepancies, adding to the ongoing debate about the nature of these relations. Finally, we report that the scatter of the Mg indices versus sigma relations correlate with Hbeta, suggesting that age may contribute to the scatter. Furthermore, this scatter shows no significant dependence on morphology or environment. Our results are consistent with the current downsizing model, where low mass galaxies have an extended star formation history (abridged).
We discuss some recent integral field spectroscopy using the SAURON instrument of a sample consisting of 24 early-type spirals, part of the SAURON Survey, and 18 late-type spirals. Using 2-dimensional maps of their stellar radial velocity, velocity d ispersion, and absorption line strength, it is now much easier to understand the nature of nearby galactic bulges. We discuss a few highlights of this work, and point out some new ideas about the formation of galactic bulges.
(Abridged) We present a stellar population analysis of the absorption line strength maps for 48 early-type galaxies from the SAURON sample. Using the line strength index maps of Hbeta, Fe5015, and Mgb, measured in the Lick/IDS system and spatially bi nned to a constant signal-to-noise, together with predictions from up-to-date stellar population models, we estimate the simple stellar population-equivalent (SSP-equivalent) age, metallicity and abundance ratio [alpha/Fe] over a two-dimensional field extending up to approximately one effective radius. We find a large range of SSP-equivalent ages in our sample, of which ~40% of the galaxies show signs of a contribution from a young stellar population. The most extreme cases of post-starburst galaxies, with SSP-equivalent ages of <=3 Gyr observed over the full field-of-view, and sometimes even showing signs of residual star-formation, are restricted to low mass systems(sigma_e <= 100 k/ms or ~2x10^10 M_sol). Spatially restricted cases of young stellar populations in circumnuclear regions can almost exclusively be linked to the presence of star-formation in a thin, dusty disk/ring, also seen in the near-UV or mid-IR. The flattened components with disk-like kinematics previously identified in all fast rotators (Krajnovic et al.) are shown to be connected to regions of distinct stellar populations. These range from the young, still star-forming circumnuclear disks and rings with increased metallicity preferentially found in intermediate-mass fast rotators, to apparently old structures with extended disk-like kinematics, which are observed to have an increased metallicity and mildly depressed [alpha/Fe] ratio compared to the main body of the galaxy. The slow rotators generally show no stellar population signatures over and above the well known metallicity gradients and are largely consistent with old (>=10 Gyr) stellar populations.
(Abridged) As part of an ongoing effort to study the stellar nuclei of very late-type, bulge-less spirals, we present results from a high-resolution spectroscopic survey of nine such nuclear star clusters, undertaken with VLT/UVES. We fit the spectra with population synthesis models and measure Lick-type indices to determine mean luminosity-weighted ages, which range from 4.1*10^7 to 1.1*10^10 years and are insensitive to assumed metallicity or internal extinction. The average metallicity of nuclear clusters in late-type spirals is slightly sub-solar (<Z> = 0.015) but shows significant scatter. The fits also show that the nuclear cluster spectra are best described by a mix of several generations of stars. This is supported by the fact that only models with composite stellar populations yield mass-to-light ratios that match those obtained from dynamical measurements. The last star formation episode was on average 34 Myr ago, while all clusters experienced some star formation in the last 100 Myr. We thus conclude that the nuclear clusters undergo repeated episodes of star formation. The robustness with respect to possible contamination from the underlying galaxy disk is demonstrated by comparison to spectra obtained with HST/STIS. Combining these results with those from Walcher et al. (2005), we have thus shown that the stellar nuclei of these bulge-less galaxies are massive and dense star clusters that form stars recurrently until the present day. This unique set of properties is likely due to the central location of these clusters in their host galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا