ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurements on a quantum particle unavoidably affect its state, since the otherwise unitary evolution of the system is interrupted by a non-unitary projection operation. In order to probe measurement-induced effects in the state dynamics using a qua ntum simulator, the challenge is to implement controlled measurements on a small subspace of the system and continue the evolution from the complementary subspace. A powerful platform for versatile quantum evolution is represented by photonic quantum walks due to their high control over all relevant parameters. However, measurement-induced dynamics in such a platform have not yet been realized. Here we implement controlled measurements in a discrete-time quantum walk based on time multiplexing. This is achieved by adding a deterministic out-coupling of the optical signal to include measurements constrained to specific positions resulting in the projection of the walkers state on the remaining ones. With this platform and coherent input light we experimentally simulate measurement-induced single particle quantum dynamics. We demonstrate the difference between dynamics with only a single measurement at the final step and those including measurements during the evolution. To this aim we study recurrence as a figure of merit, i.e. the return probability to the walkers starting position, which is measured in the two cases. We track the development of the return probability over 36 time steps and observe the onset of both recurrent and transient evolution as an effect of the different measurement schemes, a signature which only emerges for quantum systems. Our simulation of the observed one particle conditional quantum dynamics does not require a genuine quantum particle but is demonstrated with coherent light.
Since the development of Boson sampling, there has been a quest to construct more efficient and experimentally feasible protocols to test the computational complexity of sampling from photonic states. In this paper we interpret and extend the results presented in [Phys. Rev. Lett. 119, 170501 (2017)]. We derive an expression that relates the probability to measure a specific photon output pattern from a Gaussian state to the textit{hafnian} matrix function and us it to design a Gaussian Boson sampling protocol. Then, we discuss the advantages that this protocol has relative to other photonic protocols and the experimental requirements for Gaussian Boson Sampling. Finally, we relate it to the previously most general protocol, Scattershot Boson Sampling [Phys. Rev. Lett. 113, 100502 (2014)]
Atmospheric channels are a promising candidate to establish secure quantum communication on a global scale. However, due to their turbulent nature, it is crucial to understand the impact of the atmosphere on the quantum properties of light and examin e it experimentally. In this paper, we introduce a method to probe atmospheric free-space links with quantum light on a laboratory scale. In contrast to previous works, our method models arbitrary intensity losses caused by turbulence to emulate general atmospheric conditions. This allows us to characterize turbulent quantum channels in a well-controlled manner. To implement this technique, we perform a series of measurements with different constant attenuations and simulate the fluctuating losses by combining the obtained data. We directly test the proposed method with an on-chip source of nonclassical light and a time-bin-multiplexed detection system. With the obtained data, we characterize the nonclassicality of the generated states for different atmospheric noise models and analyze a post-selection protocol. This general technique in atmospheric quantum optics allows for studying turbulent quantum channels and predicting their properties for future applications.
The nonorthogonality of coherent states is a fundamental property which prevents them from being perfectly and deterministically discriminated. To circumvent this problem, we present an experimentally feasible protocol for the probabilistic orthogona lisation of a pair of coherent states, independent of their amplitude and phase. In contrast to unambiguous state discrimination, successful operation of our protocol is heralded without measuring the states, such that they remain suitable for further manipulation. As such, the resulting orthogonalised state may be used for further processing. Indeed, these states are close approximations of the discrete-variable superposition state $frac{1}{sqrt{2}}left(|0rangle pm |1rangleright)$. This feature, coupled with the non-destructive nature of the operation, is especially useful when considering superpositions of coherent states: such states are mapped to the (weakly squeezed) vacuum or single photon Fock state, depending on the phase of the superposition. Thus this operation may find utility in hybrid continuous-discrete quantum information processing protocols.
Boson Sampling has emerged as a tool to explore the advantages of quantum over classical computers as it does not require a universal control over the quantum system, which favours current photonic experimental platforms.Here, we introduce Gaussian B oson Sampling, a classically hard-to-solve problem that uses squeezed states as a non-classical resource. We relate the probability to measure specific photon patterns from a general Gaussian state in the Fock basis to a matrix function called the hafnian, which answers the last remaining question of sampling from Gaussian states. Based on this result, we design Gaussian Boson Sampling, a #P hard problem, using squeezed states. This approach leads to a more efficient photonic boson sampler with significant advantages in generation probability and measurement time over currently existing protocols.
We introduce and experimentally implement a method for the absolute detector calibration of photon-number-resolving time-bin multiplexing layouts based on the measured click statistics of superconduncting nanowire detectors. In particular, the quantu m efficiencies, the dark count rates, and the positive operator-valued measures of these measurement schemes are directly obtained with high accuracy. The method is based on the moments of the click-counting statistics for coherent states with different coherent amplitudes. The strength of our analysis is that we can directly conclude -- on a quantitative basis -- that the detection strategy under study is well described by a linear response function for the light-matter interaction and that it is sensitive to the polarization of the incident light field. Moreover, our method is further extended to a two-mode detection scenario. Finally, we present possible applications for such well characterized detectors, such as sensing of atmospheric loss channels and phase sensitive measurements.
The progress in building large quantum states and networks requires sophisticated detection techniques to verify the desired operation. To achieve this aim, a cost- and resource-efficient detection method is the time multiplexing of photonic states. This design is assumed to be efficiently scalable; however, it is restricted by inevitable losses and limited detection efficiencies. Here, we investigate the scalability of time-multiplexed detectors under the effects of fiber dispersion and losses. We use the distinguishability of Fock states up to $n=20$ after passing the time-multiplexed detector as our figure of merit and find that, for realistic setup efficiencies of $eta=0.85$, the optimal size for time-multiplexed detectors is 256 bins.
Quantum optics in combination with integrated optical devices shows great promise for efficient manipulation of single photons. New physical concepts, however, can only be found when these fields truly merge and reciprocally enhance each other. Here we work at the merging point and investigate the physical concept behind a two-coupled-waveguide system with an integrated parametric down-conversion process. We use the eigenmode description of the linear system and the resulting modification in momentum conservation to derive the state generation protocol for this type of device. With this new concept of state engineering, we are able to effectively implement a two-in-one waveguide source that produces the useful two-photon NOON state without extra overhead such as phase stabilization or narrow-band filtering. Experimentally, we benchmark our device by measuring a two-photon NOON state fidelity of $mathcal{F} = (84.2 pm 2.6) %$ and observe the characteristic interferometric pattern directly given by the doubled phase dependence with a visibility of $V_{mathrm{NOON}} = (93.3 pm 3.7) %$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا