ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual-path source engineering in integrated quantum optics

61   0   0.0 ( 0 )
 نشر من قبل Regina Kruse
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum optics in combination with integrated optical devices shows great promise for efficient manipulation of single photons. New physical concepts, however, can only be found when these fields truly merge and reciprocally enhance each other. Here we work at the merging point and investigate the physical concept behind a two-coupled-waveguide system with an integrated parametric down-conversion process. We use the eigenmode description of the linear system and the resulting modification in momentum conservation to derive the state generation protocol for this type of device. With this new concept of state engineering, we are able to effectively implement a two-in-one waveguide source that produces the useful two-photon NOON state without extra overhead such as phase stabilization or narrow-band filtering. Experimentally, we benchmark our device by measuring a two-photon NOON state fidelity of $mathcal{F} = (84.2 pm 2.6) %$ and observe the characteristic interferometric pattern directly given by the doubled phase dependence with a visibility of $V_{mathrm{NOON}} = (93.3 pm 3.7) %$.

قيم البحث

اقرأ أيضاً

Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate implementation of the optimal known gate design which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show that device performance is more sensitive to the small deviations in the coupler reflectivity, arising due to the tolerance values of the fabrication method, than phase variations in the circuit. The mode fidelity was also shown to be less sensitive to reflectivity and phase errors than process fidelity. Our best device achieves a fidelity of 0.931+/-0.001 with the ideal 4x4 unitary circuit and a process fidelity of 0.680+/-0.005 with the ideal computational-basis process.
We study quantum state tomography, entanglement detection, and channel noise reconstruction of propagating quantum microwaves via dual-path methods. The presented schemes make use of the following key elements: propagation channels, beam splitters, l inear amplifiers, and field quadrature detectors. Remarkably, our methods are tolerant to the ubiquitous noise added to the signals by phase-insensitive microwave amplifiers. Furthermore, we analyze our techniques with numerical examples and experimental data, and compare them with the scheme developed in Eichler $et$ $al$ (2011 Phys. Rev. Lett. 106 220503; 2011 Phys. Rev. Lett. 107 113601), based on a single path. Our methods provide key toolbox components that may pave the way towards quantum microwave teleportation and communication protocols.
We present a scheme for an integrated four-wave mixing source of narrow-band path-entangled photon pairs with efficient spatial pump self-rejection. The scheme is based on correlated loss in a system of waveguides in Kerr nonlinear media. We demonstr ate that this setup allows for upwards of 100dB pump rejection, without additional filtering. The effect is reached by driving the symmetric collective mode that is strongly attenuated by an engineered dissipation, while photon pairs are born in the antisymmetric mode. A similar set-up can additionally be realized for generation of two-photon NOON states, also with pump self-rejection. We discuss implementation of the scheme by means of the coherent diffusive photonics, and demostrate its feasibility both in glass (such as fused silica-glass and IG2), and planar semiconductor waveguide structures in indium phosphide (InP) and in silicon.
The advent of dispersion-engineered and highly nonlinear nanophotonics is expected to open up an all-optical path towards the strong-interaction regime of quantum optics by combining high transverse field confinement with ultra-short-pulse operation. Obtaining a full understanding of photon dynamics in such broadband devices, however, poses major challenges in the modeling and simulation of multimode non-Gaussian quantum physics, highlighting the need for sophisticated reduced models that facilitate efficient numerical study while providing useful physical insight. In this manuscript, we review our recent efforts in modeling broadband optical systems at varying levels of abstraction and generality, ranging from multimode extensions of quantum input-output theory for sync-pumped oscillators to the development of numerical methods based on a field-theoretic description of nonlinear waveguides. We expect our work not only to guide ongoing theoretical and experimental efforts towards next-generation quantum devices but also to uncover essential physics of broadband quantum photonics.
We investigate an integrated optical circuit on lithium niobate designed to implement the teleportation-based quantum relay scheme for one-way quantum communication at a telecom wavelength. Such an advanced quantum circuit merges for the first time, both optical-optical and electro-optical non-linear functions necessary to implement the desired on-chip single qubit teleportation. On one hand, spontaneous parametric down-conversion is used to produce entangled photon-pairs. On the other hand, we take advantage of two photon routers, consisting of electro-optically controllable couplers, to separate the paired photons and to perform a Bell state measurement, respectively. After having validated all the individual functions in the classical regime, we have performed a Hong-Ou-Mandel (HOM) experiment to mimic a one-way quantum communication link. Such a quantum effect, seen as a prerequisite towards achieving teleportation, has been obtained, at one of the routers, when the chip was coupled to an external single photon source. The two-photon interference pattern shows a net visibility of 80%, which validates the proof of principle of a quantum relay circuit for qubits carried by telecom photons. In case of optimized losses, such a chip could increase the maximal achievable distance of one-way quantum key distribution links by a factor 1.8. Our approach and results emphasize the high potential of integrated optics on lithium niobate as a key technology for future reconfigurable quantum information manipulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا