ترغب بنشر مسار تعليمي؟ اضغط هنا

The breathing mode of a skyrmion, corresponding to coupled oscillations of its size and chirality angle is studied numerically for a conservative classical-spin system on a $500times500$ lattice. The dependence of the oscillation frequency on the mag netic field is computed. It is linear at small fields, reaches maximum on increasing the field, then sharply tends to zero as the field approaches the threshold above which the skyrmion loses stability and collapses. Physically transparent analytical model is developed that explains the results qualitatively and provides the field dependence of the oscillation frequency that is close to the one computed numerically. It is shown that a large-amplitude breathing motion in which the skyrmion chirality angle $gamma$ is rotating in one direction is strongly damped and quickly ends by the skyrmion collapse. To the contrary, smaller-amplitude breathing motion in which $gamma$ oscillates is undamped.
Using time-resolved measurements of local magnetization in the molecular magnet Mn12-ac, we report studies of the propagation of magnetic avalanches (fast magnetization reversals) that originate from points inside the crystals rather than at the edge s. The curved nature of the fronts produced by avalanches is reflected in the time-of-arrival at micro-Hall sensors placed at the surface of the sample. Assuming that the avalanche interface is a spherical bubble that grows with a radius proportional to time, we are able to locate the approximate ignition point of each avalanche in a two-dimensional cross-section of the crystal. For the samples used in these studies, avalanches in a given crystal are found to originate in a small region with a radius of roughly 150 microns.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا