ترغب بنشر مسار تعليمي؟ اضغط هنا

Breathing Mode of a Skyrmion on a Lattice

66   0   0.0 ( 0 )
 نشر من قبل Dmitry Garanin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The breathing mode of a skyrmion, corresponding to coupled oscillations of its size and chirality angle is studied numerically for a conservative classical-spin system on a $500times500$ lattice. The dependence of the oscillation frequency on the magnetic field is computed. It is linear at small fields, reaches maximum on increasing the field, then sharply tends to zero as the field approaches the threshold above which the skyrmion loses stability and collapses. Physically transparent analytical model is developed that explains the results qualitatively and provides the field dependence of the oscillation frequency that is close to the one computed numerically. It is shown that a large-amplitude breathing motion in which the skyrmion chirality angle $gamma$ is rotating in one direction is strongly damped and quickly ends by the skyrmion collapse. To the contrary, smaller-amplitude breathing motion in which $gamma$ oscillates is undamped.


قيم البحث

اقرأ أيضاً

Magnetic skyrmion textures are realized mainly in non-centrosymmetric, e.g. chiral or polar, magnets. Extending the field to centrosymmetric bulk materials is a rewarding challenge, where the released helicity / vorticity degree of freedom and higher skyrmion density result in intriguing new properties and enhanced functionality. We report here on the experimental observation of a skyrmion lattice (SkL) phase with large topological Hall effect and an incommensurate helical pitch as small as 2.8 nm in metallic Gd3Ru4Al12, which materializes a breathing kagome lattice of Gadolinium moments. The magnetic structure of several ordered phases, including the SkL, is determined by resonant x-ray diffraction as well as small angle neutron scattering. The SkL and helical phases are also observed directly using Lorentz transmission electron microscopy. Among several competing phases, the SkL is promoted over a low-temperature transverse conical state by thermal fluctuations in an intermediate range of magnetic fields.
We show that skyrmions on the surface of a magnetic topological insulator may experience an attractive interaction that leads to the formation of a skyrmion-skyrmion bound state. This is in contrast to the case of skyrmions in a conventional chiral f erromagnet, for which the intrinsic interaction is repulsive. The origin of skyrmion binding in our model is the molecular hybridization of topologically protected electronic orbitals associated with each skyrmion. Attraction between the skyrmions can therefore be controlled by tuning a chemical potential that populates/depopulates the lowest-energy molecular orbital. We find that the skyrmion-skyrmion bound state can be made stable, unstable, or metastable depending on the chemical potential, magnetic field, and easy-axis anisotropy of the underlying ferromagnet, resulting in a rich phase diagram. Finally, we discuss the possibility to realize this effect in a recently synthesized Cr doped ${left(mathrm{Bi}_{2-y}mathrm{Sb}_{y}right)}_{2}mathrm{Te}_3$ heterostructure.
Thermal collapse of an isolated skyrmion on a two-dimensional spin lattice has been investigated. The method is based upon solution of the system of stochastic Landau-Lifshitz-Gilbert equations for up $10^4$ spins. Recently developed pulse-noise algo rithm has been used for the stochastic component of the equations. The collapse rate follows the Arrhenius law. Analytical formulas derived within a continuous spin-field model support numerically-obtained values of the energy barrier and the pre-exponential factor, and their dependence on the magnetic field. Our findings agree with experiments, as well as with recent numerical results obtained by other methods.
Using resistance fluctuation spectroscopy, we observe current-induced narrow-band noise (NBN) in the magnetic skyrmion-lattice phase of micrometer-sized MnSi. The NBN appears only when electric-current density exceeds a threshold value, indicating th at the current-driven motion of the skyrmion lattice triggers the NBN. The observed NBN frequency is 10-10$^4$ Hz at $sim$10$^{9}$ A/m$^{2}$, implying a skyrmion steady flow velocity of 1-100 $mu$m/s, 3-5 orders of magnitude slower than previously reported. The temperature evolution of the NBN frequency suggests that the steady flow entails thermally activated processes, which are most likely due to skyrmion creation and annihilation at the sample edges. This scenario is qualitatively supported by our numerical simulations considering boundary effects, which reveals that the edges limit the steady flow of skyrmions, especially at low temperatures. We discuss a mechanism that dramatically slows the skyrmion steady flow in a microfabricated specimen.
Active control of spin-wave dynamics is demonstrated using broadband ferromagnetic resonance in two-dimensional Ni80Fe20 antidot lattices arranged in hexagonal lattice with fixed lattice constant but varying antidot diameter. A strong modification in the spin-wave spectra is obtained with the variation in the antidot diameter as well as with the strength and orientation of the bias magnetic field. A broad band of modes is observed for the lattice with higher antidot diameter which decreases systematically as the antidot diameter is reduced. A crossover between the higher frequency branches is achieved in lattices with higher antidot diameter. In addition, the spin-wave modes in all lattices show a strong six-fold anisotropic behaviour due to the variation of internal field distribution as a function of the bias-field orientation. A mode hopping-like behavior is observed in the angular dispersions of spin-wave spectra for samples having intermediate hole diameters. Micromagnetic simulations qualitatively reproduce the experimentally observed spin-wave modes and the simulated mode profiles reveal the presence of extended and quantized standing spin-wave modes in these lattices. These observations are significant for large tunability and anisotropic propagation of spin waves in GHz frequency magnetic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا