ترغب بنشر مسار تعليمي؟ اضغط هنا

328 - Re-Bing Wu , Xi Cao , Pinchen Xie 2020
Toward quantum machine learning deployed on imperfect near-term intermediate-scale quantum (NISQ) processors, the entire physical implementation of should include as less as possible hand-designed modules with only a few ad-hoc parameters to be deter mined. This work presents such a hardware-friendly end-to-end quantum machine learning scheme that can be implemented with imperfect near-term intermediate-scale quantum (NISQ) processors. The proposal transforms the machine learning task to the optimization of controlled quantum dynamics, in which the learning model is parameterized by experimentally tunable control variables. Our design also enables automated feature selection by encoding the raw input to quantum states through agent control variables. Comparing with the gate-based parameterized quantum circuits, the proposed end-to-end quantum learning model is easy to implement as there are only few ad-hoc parameters to be determined. Numerical simulations on the benchmarking MNIST dataset demonstrate that the model can achieve high performance using only 3-5 qubits without downsizing the dataset, which shows great potential for accomplishing large-scale real-world learning tasks on NISQ processors.arning models. The scheme is promising for efficiently performing large-scale real-world learning tasks using intermediate-scale quantum processors.
Quantum Fourier transform (QFT) is a key ingredient of many quantum algorithms where a considerable amount of ancilla qubits and gates are often needed to form a Hilbert space large enough for high-precision results. Qubit recycling reduces the numbe r of ancilla qubits to one but imposes the requirement of repeated measurements and feedforward within the coherence time of the qubits. Moreover, recycling only applies to certain cases where QFT can be carried out in a semi-classical way. Here, we report a novel approach based on two harmonic resonators which form a high-dimensional Hilbert space for the realization of QFT. By employing the all-resonant and perfect state-transfer methods, we develop a protocol that transfers an unknown multi-qubit state to one resonator. QFT is performed by the free evolution of the two resonators with a cross-Kerr interaction. Then, the fully-quantum result can be localized in the second resonator by a projective measurement. Qualitative analysis shows that a 2^10-dimensional QFT can be realized in current superconducting quantum circuits which paves the way for implementing various quantum algorithms in the noisy intermediate-scale quantum (NISQ) era.
101 - Hai-Jin Ding , Re-Bing Wu 2019
High-precision manipulation of multi-qubit quantum systems requires strictly clocked and synchronized multi-channel control signals. However, practical Arbitrary Waveform Generators (AWGs) always suffer from random signal jitters and channel latencie s that induces non-ignorable state or gate operation errors. In this paper, we analyze the average gate error caused by clock noises, from which an estimation formula is derived for quantifying the control robustness against clock noises. This measure is then employed for finding robust controls via a homotopic optimization algorithm. We also introduce our recently proposed stochastic optimization algorithm, b-GRAPE, for training robust controls via randomly generated clock noise samples. Numerical simulations on a two-qubit example demonstrate that both algorithms can greatly improve the control robustness against clock noises. The homotopic algorithm converges much faster than the b-GRAPE algorithm, but the latter can achieve more robust controls against clock noises.
Robust and high-precision quantum control is extremely important but challenging for the functionization of scalable quantum computation. In this paper, we show that this hard problem can be translated to a supervised machine learning task by treatin g the time-ordered quantum evolution as a layer-ordered neural network (NN). The seeking of robust quantum controls is then equivalent to training a highly {it generalizable} NN, to which numerous tuning skills matured in machine learning can be transferred. This opens up a door through which a family of robust control algorithms can be developed. We exemplify such potential by introducing the commonly used trick of batch-based optimization, and the resulting stochastic b-GRAPE algorithm is numerically shown to be able to remarkably enhance the control robustness while maintaining high fidelity.
In non-Hermitian coulped-resonator networks, the eigenvectors of degenerate eigenmodes may become parallel due to the singularity at so-called Exceptional Points (EP). To exploit the parametric sensitivity at EPs, an important problem is, given an ar bitrary set of coupled resonators, how to generate a desired EP by properly coupling them together. This paper provides the solution for the case of three resonators. We show that all physically admissible EPs can be realized with either weakly coupled linear networks or strongly coupled circular networks, and the latter type of EPs has not been reported in the literature. Each admissible EP eigenvalue can be realized by two and only two resonator networks, and the formulas for calculating the required coupling constants are provided. The characteristics of these EPs are illustrated by the change of transmission spectra near them, which verify the enhanced sensitivity induced by the singularity of EPs.
In the quest to achieve scalable quantum information processing technologies, gradient-based optimal control algorithms (e.g., GRAPE) are broadly used for implementing high-precision quantum gates, but their performance is often hindered by determini stic or random errors in the system model and the control electronics. In this paper, we show that GRAPE can be taught to be more effective by jointly learning from the design model and the experimental data obtained from process tomography. The resulting data-driven gradient optimization algorithm (d-GRAPE) can in principle correct all deterministic gate errors, with a mild efficiency loss. The d-GRAPE algorithm may become more powerful with broadband controls that involve a large number of control parameters, while other algorithms usually slow down due to the increased size of the search space. These advantages are demonstrated by simulating the implementation of a two-qubit CNOT gate.
We present a comprehensive analysis of the landscape for full quantum-quantum control associated with the expectation value of an arbitrary observable of one quantum system controlled by another quantum system. It is shown that such full quantum-quan tum control landscapes are convex, and hence devoid of local suboptima and saddle points that may exist in landscapes for quantum systems controlled by time-dependent classical fields. There is no controllability requirement for the full quantum-quantum landscape to be trap-free, although the forms of Hamiltonians, the flexibility in choosing initial state of the controller, as well as the control duration, can infulence the reachable optimal value on the landscape. All level sets of the full quantum-quantum landscape are connected convex sets. Finally, we show that the optimal solution of the full quantum-quantum control landscape can be readily determined numerically, which is demonstrated using the Jaynes-Cummings model depicting a two-level atom interacting with a quantized radiation field.
In NMR (Nuclear Magnetic Resonance) quantum computation, the selective control of multiple homonuclear spins is usually slow because their resonance frequencies are very close to each other. To quickly implement controls against decoherence effects, this paper presents an efficient numerical algorithm fordesigning minimum-time local transformations in two homonuclear spins. We obtain an accurate minimum-time estimation via geometric analysis on the two-timescale decomposition of the dynamics. Such estimation narrows down the range of search for the minimum-time control with a gradient-type optimization algorithm. Numerical simulations show that this method can remarkably reduce the search efforts, especially when the frequency difference is very small and the control field is high. Its effectiveness is further demonstrated by NMR experiments with two homunuclear carbon spins in a trichloroethylene (C2H1Cl3) sample system.
In quantum optimal control theory, kinematic bounds are the minimum and maximum values of the control objective achievable for any physically realizable system dynamics. For a given initial state of the system, these bounds depend on the nature and s tate of the controller. We consider a general situation where the controlled quantum system is coupled to both an external classical field (referred to as a classical controller) and an auxiliary quantum system (referred to as a quantum controller). In this general situation, the kinematic bound is between the classical kinematic bound (CKB), corresponding to the case when only the classical controller is available, and the quantum kinematic bound (QKB), corresponding to the ultimate physical limit of the objectives value. Specifically, when the control objective is the expectation value of a quantum observable (a Hermitian operator on the systems Hilbert space), the QKBs are the minimum and maximum eigenvalues of this operator. We present, both qualitatively and quantitatively, the necessary and sufficient conditions for surpassing the CKB and reaching the QKB, through the use of a quantum controller. The general conditions are illustrated by examples in which the system and controller are initially in thermal states. The obtained results provide a basis for the design of quantum controllers capable of maximizing the control yield and reaching the ultimate physical limit.
Enabled by rapidly developing quantum technologies, it is possible to network quantum systems at a much larger scale in the near future. To deal with non-Markovian dynamics that is prevalent in solid-state devices, we propose a general transfer funct ion based framework for modeling linear quantum networks, in which signal flow graphs are applied to characterize the network topology by flow of quantum signals. We define a noncommutative ring $mathbb{D}$ and use its elements to construct Hamiltonians, transformations and transfer functions for both active and passive systems. The signal flow graph obtained for direct and indirect coherent quantum feedback systems clearly show the feedback loop via bidirectional signal flows. Importantly, the transfer function from input to output field is derived for non-Markovian quantum systems with colored inputs, from which the Markovian input-output relation can be easily obtained as a limiting case. Moreover, the transfer function possesses a symmetry structure that is analogous to the well-know scattering transformation in sd picture. Finally, we show that these transfer functions can be integrated to build complex feedback networks via interconnections, serial products and feedback, which may include either direct or indirect coherent feedback loops, and transfer functions between quantum signal nodes can be calculated by the Riegles matrix gain rule. The theory paves the way for modeling, analyzing and synthesizing non-Markovian linear quantum feedback networks in the frequency-domain.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا