ﻻ يوجد ملخص باللغة العربية
High-precision manipulation of multi-qubit quantum systems requires strictly clocked and synchronized multi-channel control signals. However, practical Arbitrary Waveform Generators (AWGs) always suffer from random signal jitters and channel latencies that induces non-ignorable state or gate operation errors. In this paper, we analyze the average gate error caused by clock noises, from which an estimation formula is derived for quantifying the control robustness against clock noises. This measure is then employed for finding robust controls via a homotopic optimization algorithm. We also introduce our recently proposed stochastic optimization algorithm, b-GRAPE, for training robust controls via randomly generated clock noise samples. Numerical simulations on a two-qubit example demonstrate that both algorithms can greatly improve the control robustness against clock noises. The homotopic algorithm converges much faster than the b-GRAPE algorithm, but the latter can achieve more robust controls against clock noises.
Quantum systems can be controlled by other quantum systems in a reversible way, without any information leaking to the outside of the system-controller compound. Such coherent quantum control is deterministic, is less noisy than measurement-based fee
In multi-qubit system, correlated errors subject to unwanted interactions with other qubits is one of the major obstacles for scaling up quantum computers to be applicable. We present two approaches to correct such noise and demonstrate with high fid
In real-life implementations of quantum key distribution (QKD), the physical systems with unwanted imperfections would be exploited by an eavesdropper. Based on imperfections in the detectors, detector control attacks have been successfully launched
Adiabatic passage is a standard tool for achieving robust transfer in quantum systems. We show that, in the context of driven nonlinear Hamiltonian systems, adiabatic passage becomes highly non-robust when the target is unstable. We show this result
While it is known that unconditionally secure position-based cryptography is impossible both in the classical and the quantum setting, it has been shown that some quantum protocols for position verification are secure against attackers which share a