ترغب بنشر مسار تعليمي؟ اضغط هنا

We derive the linearly perturbed matching conditions between a Schwarzschild spacetime region with stationary and axially symmetric perturbations and a FLRW spacetime with arbitrary perturbations. The matching hypersurface is also perturbed arbitrari ly and, in all cases, the perturbations are decomposed into scalars using the Hodge operator on the sphere. This allows us to write down the matching conditions in a compact way. In particular, we find that the existence of a perturbed (rotating, stationary and vacuum) Schwarzschild cavity in a perturbed FLRW universe forces the cosmological perturbations to satisfy constraints that link rotational and gravitational wave perturbations. We also prove that if the perturbation on the FLRW side vanishes identically, then the vacuole must be perturbatively static and hence Schwarzschild. By the dual nature of the problem, the first result translates into links between rotational and gravitational wave perturbations on a perturbed Oppenheimer-Snyder model, where the perturbed FLRW dust collapses in a perturbed Schwarzschild environment which rotates in equilibrium. The second result implies in particular that no region described by FLRW can be a source of the Kerr metric.
We present a critical review about the study of linear perturbations of matched spacetimes including gauge problems. We analyse the freedom introduced in the perturbed matching by the presence of background symmetries and revisit the particular case of spherically symmetry in n-dimensions. This analysis includes settings with boundary layers such as brane world models and shell cosmologies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا