ترغب بنشر مسار تعليمي؟ اضغط هنا

التشويشات الخطية للأزمنة المطابقة: المشكلة الموضعية والأساليب الخلفية

Linear perturbations of matched spacetimes: the gauge problem and background symmetries

157   0   0.0 ( 0 )
 نشر من قبل Raul Vera
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a critical review about the study of linear perturbations of matched spacetimes including gauge problems. We analyse the freedom introduced in the perturbed matching by the presence of background symmetries and revisit the particular case of spherically symmetry in n-dimensions. This analysis includes settings with boundary layers such as brane world models and shell cosmologies.



قيم البحث

اقرأ أيضاً

This article investigates the stability of a generic Kasner spacetime to linear perturbations, both at late and early times. It demonstrates that the perturbation of the Weyl tensor diverges at late time in all cases but in the particular one in whic h the Kasner spacetime is the product of a two-dimensional Milne spacetime and a two-dimensional Euclidean space. At early times, the perturbation of the Weyl tensor also diverges unless one imposes a condition on the perturbations so as to avoid the most divergent modes to be excited.
In this paper we investigate conformal symmetries in Locally Rotationally Symmetric (LRS) spacetimes using a semitetrad covariant formalism. We demonstrate that a general LRS spacetime which rotates and spatially twists simultaneously has an inherent homothetic symmetry in the plane spanned by the fluid flow lines and the preferred spatial direction. We discuss the nature and consequence of this homothetic symmetry showing that a null Killing horizon arises when the heat flux has an extremal value. We also consider the special case of a perfect fluid and the restriction on the conformal geometry.
In this paper we excavate, for the first time, the most general class of conformal Killing vectors, that lies in the two dimensional subspace described by the null and radial co-ordinates, that are admitted by the generalised Vaidya geometry. Subsequ ently we find the most general class of generalised Vaidya mass functions that give rise to such conformal symmetry. From our analysis it is clear that why some well known subclasses of generalised Vaidya geometry, like pure Vaidya or charged Vaidya solutions, admit only homothetic Killing vectors but no proper conformal Killing vectors with non constant conformal factors. We also study the gravitational collapse of generalised Vaidya spacetimes that posses proper conformal symmetry to show that if the central singularity is naked then in the vicinity of the central singularity the spacetime becomes almost self similar. This study definitely sheds new light on the geometrical properties of generalised Vaidya spacetimes.
159 - Michele Lenzi 2021
Perturbation theory of vacuum spherically-symmetric spacetimes is a crucial tool to understand the dynamics of black hole perturbations. Spherical symmetry allows for an expansion of the perturbations in scalar, vector, and tensor harmonics. The resu lting perturbative equations are decoupled for modes with different parity and different harmonic numbers. Moreover, for each harmonic and parity, the equations for the perturbations can be decoupled in terms of (gauge-invariant) master functions that satisfy 1+1 wave equations. By working in a completely general perturbative gauge, in this paper we study what is the most general master function that is linear in the metric perturbations and their first-order derivatives and satisfies a wave equation with a potential. The outcome of the study is that for each parity we have two branches of solutions with similar features. One of the branches includes the known results: In the odd-parity case, the most general master function is an arbitrary linear combination of the Regge-Wheeler and the Cunningham-Price-Moncrief master functions whereas in the even-parity case it is an arbitrary linear combination of the Zerilli master function and another master function that is new to our knowledge. The other branch is very different since it includes an infinite collection of potentials which in turn lead to an independent collection master of functions which depend on the potential. The allowed potentials satisfy a non-linear ordinary differential equation. Finally, all the allowed master functions are gauge invariant and can be written in a fully covariant form.
We study (covariant) scalar-vector-tensor (SVT) perturbations of infinite derivative gravity (IDG), at the quadratic level of the action, around conformally-flat, covariantly constant curvature backgrounds which are not maximally symmetric spacetimes (MSS). This extends a previous analysis of perturbations done around MSS, which were shown to be ghost-free. We motivate our choice of backgrounds which arise as solutions of IDG in the UV, avoiding big bang and black hole singularities. Contrary to MSS, in this paper we show that, generically, all SVT modes are coupled to each other at the quadratic level of the action. We consider simple examples of the full IDG action, and illustrate this mixing and also a case where the action can be diagonalized and ghost-free solutions constructed. Our study is widely applicable for both non-singular cosmology and black hole physics where backgrounds depart from MSS. In appendices, we provide SVT perturbations around conformally-flat and arbitrary backgrounds which can serve as a compendium of useful results when studying SVT perturbations of various higher derivative gravity models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا