ترغب بنشر مسار تعليمي؟ اضغط هنا

Modern visualization tools aim to allow data analysts to easily create exploratory visualizations. When the input data layout conforms to the visualization design, users can easily specify visualizations by mapping data columns to visual channels of the design. However, when there is a mismatch between data layout and the design, users need to spend significant effort on data transformation. We propose Falx, a synthesis-powered visualization tool that allows users to specify visualizations in a similarly simple way but without needing to worry about data layout. In Falx, users specify visualizations using examples of how concrete values in the input are mapped to visual channels, and Falx automatically infers the visualization specification and transforms the data to match the design. In a study with 33 data analysts on four visualization tasks involving data transformation, we found that users can effectively adopt Falx to create visualizations they otherwise cannot implement.
While visualizations play a crucial role in gaining insights from data, generating useful visualizations from a complex dataset is far from an easy task. Besides understanding the functionality provided by existing visualization libraries, generating the desired visualization also requires reshaping and aggregating the underlying data as well as composing different visual elements to achieve the intended visual narrative. This paper aims to simplify visualization tasks by automatically synthesizing the required program from simple visual sketches provided by the user. Specifically, given an input data set and a visual sketch that demonstrates how to visualize a very small subset of this data, our technique automatically generates a program that can be used to visualize the entire data set. Automating visualization poses several challenges. First, because many visualization tasks require data wrangling in addition to generating plots, we need to decompose the end-to-end synthesis task into two separate sub-problems. Second, because the intermediate specification that results from the decomposition is necessarily imprecise, this makes the data wrangling task particularly challenging in our context. In this paper, we address these problems by developing a new compositional visualization-by-example technique that (a) decomposes the end-to-end task into two different synthesis problems over different DSLs and (b) leverages bi-directional program analysis to deal with the complexity that arises from having an imprecise intermediate specification. We implemented our visualization-by-example algorithm and evaluate it on 83 visualization tasks collected from on-line forums and tutorials. Viser can solve 84% of these benchmarks within a 600 second time limit, and, for those tasks that can be solved, the desired visualization is among the top-5 generated by Viser in 70% of the cases.
Inference algorithms in probabilistic programming languages (PPLs) can be thought of as interpreters, since an inference algorithm traverses a model given evidence to answer a query. As with interpreters, we can improve the efficiency of inference al gorithms by compiling them once the model, evidence and query are known. We present SIMPL, a domain specific language for inference algorithms, which uses this idea in order to automatically specialize annotated inference algorithms. Due to the approach of specialization, unlike a traditional compiler, with SIMPL new inference algorithms can be added easily, and still be optimized using domain-specific information. We evaluate SIMPL and show that partial evaluation gives a 2-6x speedup, caching provides an additional 1-1.5x speedup, and generating C code yields an additional 13-20x speedup, for an overall speedup of 30-150x for several inference algorithms and models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا