ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical metasurfaces consist of a 2D arrangement of scatterers, and they control the amplitude, phase, and polarization of an incidence field on demand. Optical metasurfaces are the cornerstone for a future generation of flat optical devices in a wid e range of applications. The rapidly growing advances in nanofabrication have made the versatile design and analysis of these ultra-thin surfaces an ever-growing necessity. However, despite their importance, a comprehensive theory to describe the optical response of periodic metasurfaces in closed-form and analytical expressions has not been formulated, and prior attempts were frequently approximate. Here, we develop a theory that analytically links the properties of the scatterer, from which a periodic metasurface is made, to its optical response via the lattice coupling matrix. The scatterers are represented by their polarizability or T matrix, and our theory works for normal and oblique incidence. We provide explicit expressions for the optical response up to octupolar order in both spherical and Cartesian coordinates. Several examples demonstrate that our analytical tool constitutes a paradigm shift in designing and understanding optical metasurfaces. Novel fully-diffracting metagratings and particle-independent polarization filters are proposed, and novel insights into the response of Huygens metasurfaces under oblique incidence are provided. Our analytical expressions are a powerful tool for exploring the physics of metasurfaces and designing novel flat optics devices.
69 - Rasoul Alaee , Yaswant Vaddi , 2020
We propose a tunable coherent perfect absorber based on ultrathin nonlinear metasurfaces. The nonlinear metasurface is made of plasmonic nanoantennas coupled to an epsilon-near-zero material with a large optical nonlinearity. The coherent perfect abs orption is achieved by controlling the relative phases of the input beams. We show that the optical response of the nonlinear metasurface can be tuned from a complete to a partial absorption by changing the intensity of the pump beam. The proposed nonlinear metasurface can be used to design optically tunable thermal emitters, modulators, and sensors.
Transient optical heating provides an efficient way to trigger phase transitions in naturally occurring media through ultrashort laser pulse irradiation. A similar approach could be used to induce topological phase transitions in the photonic respons e of suitably engineered artificial structures known as metamaterials. Here, we predict a topological transition in the isofrequency dispersion contours of a layered graphene metamaterial under optical pumping. We show that the contour topology transforms from elliptic to hyperbolic within a subpicosecond timescale by exploiting the extraordinary photothermal properties of graphene. This new phenomenon allows us to theoretically demonstrate applications in engineering the decay rate of proximal optical emitters, ultrafast beam steering, and dynamical far-field subwavelength imaging. Our study opens a disruptive approach toward ultrafast control of light emission, beam steering, and optical image processing.
We propose novel quantum antennas and metamaterials with strong magnetic response at optical frequencies. Our design is based on the arrangement of natural atoms with only electric dipole transition moments at distances smaller than a wavelength of l ight but much larger than their physical size. In particular, we show that an atomic dimer can serve as a magnetic antenna at its antisymmetric mode to enhance the decay rate of a magnetic transition in its vicinity by several orders of magnitude. Furthermore, we study metasurfaces composed of atomic bilayers with and without cavities and show that they can fully reflect the electric and magnetic fields of light, thus, forming nearly perfect electric/magnetic mirrors. The proposed quantum metamaterials can be fabricated with available state-of-the-art technologies and promise several applications both in classical optics and quantum engineering.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا