ﻻ يوجد ملخص باللغة العربية
Optical metasurfaces consist of a 2D arrangement of scatterers, and they control the amplitude, phase, and polarization of an incidence field on demand. Optical metasurfaces are the cornerstone for a future generation of flat optical devices in a wide range of applications. The rapidly growing advances in nanofabrication have made the versatile design and analysis of these ultra-thin surfaces an ever-growing necessity. However, despite their importance, a comprehensive theory to describe the optical response of periodic metasurfaces in closed-form and analytical expressions has not been formulated, and prior attempts were frequently approximate. Here, we develop a theory that analytically links the properties of the scatterer, from which a periodic metasurface is made, to its optical response via the lattice coupling matrix. The scatterers are represented by their polarizability or T matrix, and our theory works for normal and oblique incidence. We provide explicit expressions for the optical response up to octupolar order in both spherical and Cartesian coordinates. Several examples demonstrate that our analytical tool constitutes a paradigm shift in designing and understanding optical metasurfaces. Novel fully-diffracting metagratings and particle-independent polarization filters are proposed, and novel insights into the response of Huygens metasurfaces under oblique incidence are provided. Our analytical expressions are a powerful tool for exploring the physics of metasurfaces and designing novel flat optics devices.
There is today a growing need to accurately model the angular scattering response of metasurfaces for optical analog processing applications. However, the current metasurface modeling techniques are not well suited for such a task since they are limi
The classical adjoint-based topology optimization (TO) method, based on the use of a random continuous dielectric function as an adjoint variable distribution, is known to be one of the most efficient optimization methods that enable the design of op
Diffractive photonic devices manipulate light via local and nonlocal optical modes. Local devices, such as metasurfaces, can shape a wavefront at multiple selected wavelengths, but inevitably modify light across the spectrum; nonlocal devices, such a
Lithium niobate is a multi-functional material, which has been regarded as one of the most promising platform for the multi-purpose optical components and photonic circuits. Targeting at the miniature optical components and systems, lithium niobate m
Actively tunable and reconfigurable wavefront shaping by optical metasurfaces poses a significant technical challenge often requiring unconventional materials engineering and nanofabrication. Most wavefront-shaping metasurfaces can be considered loca