ترغب بنشر مسار تعليمي؟ اضغط هنا

The measurement of circular dichroism (CD) has widely been exploited to distinguish the different enantiomers of chiral structures. It has been applied to natural materials (e.g. molecules) as well as to artificial materials (e.g. nanophotonic struct ures). However, especially for chiral molecules the signal level is very low and increasing the signal-to-noise ratio is of paramount importance to either shorten the necessary measurement time or to lower the minimum detectable molecule concentration. As one solution to this problem, we propose here to use quantum states of light in CD sensing to reduce the noise below the shot noise limit that is encountered when using coherent states of light. Through a multi-parameter estimation approach, we identify the ultimate quantum limit to precision of CD sensing, allowing for general schemes including additional ancillary modes. We show that the ultimate quantum limit can be achieved by various optimal schemes. It includes not only Fock state input in direct sensing configuration but also twin-beam input in ancilla-assisted sensing configuration, for both of which photon number resolving detection needs to be performed as the optimal measurement setting. These optimal schemes offer a significant quantum enhancement even in the presence of additional system loss. The optimality of a practical scheme using a twin-beam state in direct sensing configuration is also investigated in details as a nearly optimal scheme for CD sensing when the actual CD signal is very small. Alternative schemes involving single-photon sources and detectors are also proposed. This work paves the way for further investigations of quantum metrological techniques in chirality sensing.
150 - Ranjith Nair , Mile Gu 2020
In Quantum Illumination (QI), a signal beam initially entangled with an idler beam held at the receiver interrogates a target region bathed in thermal background light. The returned beam is measured jointly with the idler in order to determine whethe r a weakly reflecting target is present. Using tools from quantum information theory, we derive lower bounds on the average error probability of detecting both specular and fading targets and on the mean squared error of estimating the reflectance of a detected target, which are obeyed by any QI transmitter satisfying a signal energy constraint. For bright thermal backgrounds, we show that the QI system using multiple copies of low-brightness two-mode squeezed vacuum states is nearly optimal. More generally, our results place limits on the best possible performance achievable using QI systems at all wavelengths, and at all signal and background noise levels.
Larson and Saleh [Optica 5, 1382 (2018)] suggest that Rayeleighs curse can recur and become unavoidable if the two sources are partially coherent. Here we show that their calculations and assertions have fundamental problems, and spatial-mode demulti plexing (SPADE) can overcome Rayleighs curse even for partially coherent sources.
69 - Ranjith Nair 2018
The problem of estimating multiple loss parameters of an optical system using the most general ancilla-assisted parallel strategy is solved under energy constraints. An upper bound on the quantum Fisher information matrix is derived assuming that the environment modes involved in the loss interaction can be accessed. Any pure-state probe that is number-diagonal in the modes interacting with the loss elements is shown to exactly achieve this upper bound even if the environment modes are inaccessible, as is usually the case in practice. We explain this surprising phenomenon, and show that measuring the Schmidt bases of the probe is a parameter-independent optimal measurement. Our results imply that multiple copies of two-mode squeezed vacuum probes with an arbitrarily small nonzero degree of squeezing, or probes prepared using single-photon states and linear optics can achieve quantum-optimal performance in conjunction with on-off detection. We also calculate explicitly the energy-constrained Bures distance between any two product loss channels. Our results are relevant to standoff image sensing, biological imaging, absorption spectroscopy, and photodetector calibration.
We analyze the fundamental quantum limit of the resolution of an optical imaging system from the perspective of the detection problem of deciding whether the optical field in the image plane is generated by one incoherent on-axis source with brightne ss $epsilon$ or by two $epsilon/2$-brightness incoherent sources that are symmetrically disposed about the optical axis. Using the exact thermal-state model of the field, we derive the quantum Chernoff bound for the detection problem, which specifies the optimum rate of decay of the error probability with increasing number of collected photons that is allowed by quantum mechanics. We then show that recently proposed linear-optic schemes approach the quantum Chernoff bound---the method of binary spatial-mode demultiplexing (B-SPADE) is quantum-optimal for all values of separation, while a method using image-inversion interferometry (SLIVER) is near-optimal for sub-Rayleigh separations. We then simplify our model using a low-brightness approximation that is very accurate for optical microscopy and astronomy, derive quantum Chernoff bounds conditional on the number of photons detected, and show the optimality of our schemes in this conditional detection paradigm. For comparison, we analytically demonstrate the superior scaling of the Chernoff bound for our schemes with source separation relative to that of spatially-resolved direct imaging. Our schemes have the advantages over the quantum-optimal (Helstrom) measurement in that they do not involve joint measurements over multiple modes, and that they do not require the angular separation for the two-source hypothesis to be given emph{a priori} and can offer that information as a bonus in the event of a successful detection.
55 - Ranjith Nair 2017
We revisit the notion of nonclassical distance of states of bosonic quantum systems introduced in [M. Hillery, Phys. Rev. A 35, 725 (1987)] in a general multimode setting. After reviewing its definition, we establish some of its general properties. W e obtain new upper and lower bounds on the nonclassical distance in terms of the supremum of the Husimi function of the state. Considering several examples, we elucidate the cases for which our lower bound is tight, which include the multimode number states and a class of multimode N00N states. The latter provide examples of states of definite photon number $n geq 2$ whose nonclassical distance can be made arbitrarily close to the upper limit of $1$ by increasing the number of modes. We show that the nonclassical distance of the even and odd Schrodinger cat states is bounded away from unity regardless of how macroscopic the superpositions are, and that the nonclassical distance is not necessarily monotonically increasing with respect to macroscopicity.
We analyze the fundamental resolution of incoherent optical point sources from the perspective of a quantum detection problem: deciding whether the optical field on the image plane is generated by one source or two weaker sources with arbitrary separ ation. We investigate the detection performances of two measurement methods recently proposed by us to enhance the estimation of the separation. For the detection problem, we show that the method of binary spatial-mode demultiplexing is quantum-optimal for all values of separations, while the method of image-inversion interferometry is near-optimal for sub-Rayleigh separations. Unlike the proposal by Helstrom, our schemes do not require the separation to be given and can offer that information as a bonus in the event of a successful detection. For comparison, we also demonstrate the supremacy of our schemes over direct imaging for sub-Rayleigh separations. These results demonstrate that simple linear optical measurements can offer supremal performances for both detection and estimation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا