ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the potential energy surface of the ozone molecule by means of Quantum Monte Carlo simulations based on the resonating valence bond concept. The trial wave function consists of an antisymmetrized geminal power arranged in a single-determinan t that is multiplied by a Jastrow correlation factor. Whereas the determinantal part incorporates static correlation effects, the augmented real-space correlation factor accounts for the dynamics electron correlation. The accuracy of this approach is demonstrated by computing the potential energy surface for the ozone molecule in three vibrational states: symmetric, asymmetric and scissoring. We find that the employed wave function provides a detailed description of rather strongly-correlated multi-reference systems, which is in quantitative agreement with experiment.
We present theoretical calculations of the Raman and IR spectra, as well as electronic properties at zero and finite temperature to elucidate the crystal structure of phase III of solid molecular hydrogen. We find that anharmonic finite temperature a re particularly important and qualitatively influences the main conclusions. While P6$_3$/m is the most likely candidate for phase III at the nuclear ground state, at finite temperature the C2/c structure appears to be more suitable.
We investigate the effects of point charge defects on the single particle electronic structure, emission energies, fine structure splitting and oscillator strengths of excitonic transitions in strained In$_{0.6}$Ga$_{0.4}$As/GaAs and strain-free GaAs /Al$_{0.3}$Ga$_{0.7}$As quantum dots. We find that the charged defects significantly modify the single particle electronic structure and excitonic spectra in both strained and strain-free structures. However, the excitonic fine structure splitting, polarization anisotropy and polarization direction in strained quantum dots remain nearly unaffected, while significant changes are observed for strain-free quantum dots.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا